Two-dimensional $\mathbb{Z}_2$ lattice gauge theory on a near-term
quantum simulator: variational quantum optimization, confinement, and
topological order
- URL: http://arxiv.org/abs/2112.11787v2
- Date: Tue, 5 Jul 2022 07:22:13 GMT
- Title: Two-dimensional $\mathbb{Z}_2$ lattice gauge theory on a near-term
quantum simulator: variational quantum optimization, confinement, and
topological order
- Authors: Luca Lumia, Pietro Torta, Glen B. Mbeng, Giuseppe E. Santoro, Elisa
Ercolessi, Michele Burrello, Matteo M. Wauters
- Abstract summary: We propose an implementation of a two-dimensional $mathbbZ$ lattice gauge theory model on a shallow quantum circuit.
The ground state preparation is numerically analyzed on a small lattice with a variational quantum algorithm.
Our work shows that variational quantum algorithms provide a useful technique to be added in the growing toolbox for digital simulations of lattice gauge theories.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an implementation of a two-dimensional $\mathbb{Z}_2$ lattice
gauge theory model on a shallow quantum circuit, involving a number of single
and two-qubits gates comparable to what can be achieved with present-day and
near-future technologies. The ground state preparation is numerically analyzed
on a small lattice with a variational quantum algorithm, which requires a small
number of parameters to reach high fidelities and can be efficiently scaled up
on larger systems. Despite the reduced size of the lattice we consider, a
transition between confined and deconfined regimes can be detected by measuring
expectation values of Wilson loop operators or the topological entropy.
Moreover, if periodic boundary conditions are implemented, the same optimal
solution is transferable among all four different topological sectors, without
any need for further optimization on the variational parameters. Our work shows
that variational quantum algorithms provide a useful technique to be added in
the growing toolbox for digital simulations of lattice gauge theories.
Related papers
- Variational quantum simulation of ground states and thermal states for lattice gauge theory with multi-objective optimization [0.0]
Variational quantum algorithms provide feasible approaches for simulating quantum systems.
In this paper, we incorporate multi-objective optimization for variational quantum simulation of lattice gauge theory at zero and finite temperatures.
arXiv Detail & Related papers (2024-08-30T13:56:22Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Accelerating Quantum Optimal Control of Multi-Qubit Systems with
Symmetry-Based Hamiltonian Transformations [3.0126004742841253]
We present a novel, computationally efficient approach to accelerate quantum optimal control calculations of large multi-qubit systems.
Our approach reduces the Hamiltonian size of an $n$-qubit system from 2n by 2n to O(n by n) or O((2n / n) by (2n / n) under Sn or Dn symmetry.
arXiv Detail & Related papers (2023-09-12T00:08:17Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Lattice Renormalization of Quantum Simulations [8.771066413050963]
We show that trotterized time-evolution operators can be related by analytic continuation to the Euclidean transfer matrix on an anisotropic lattice.
Based on the tools of Euclidean lattice field theory, we propose two schemes to determine Minkowski lattice spacings.
arXiv Detail & Related papers (2021-07-02T16:10:45Z) - Towards simulating 2D effects in lattice gauge theories on a quantum
computer [1.327151508840301]
We propose an experimental quantum simulation scheme to study ground state properties in two-dimensional quantum electrodynamics (2D QED) using existing quantum technology.
The proposal builds on a formulation of lattice gauge theories as effective spin models in arXiv:2006.14160.
We present two Variational Quantum Eigensolver (VQE) based protocols for the study of magnetic field effects, and for taking an important first step towards computing the running coupling of QED.
arXiv Detail & Related papers (2020-08-21T01:20:55Z) - The quantum sine-Gordon model with quantum circuits [0.0]
We numerically investigate a one-dimensional, faithful, analog, quantum electronic circuit simulator built out of Josephson junctions.
We provide numerical evidence that the parameters required to realize the quantum sine-Gordon model are accessible with modern-day superconducting circuit technology.
arXiv Detail & Related papers (2020-07-14T07:39:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.