QAGCN: Answering Multi-Relation Questions via Single-Step Implicit Reasoning over Knowledge Graphs
- URL: http://arxiv.org/abs/2206.01818v3
- Date: Thu, 28 Mar 2024 20:38:01 GMT
- Title: QAGCN: Answering Multi-Relation Questions via Single-Step Implicit Reasoning over Knowledge Graphs
- Authors: Ruijie Wang, Luca Rossetto, Michael Cochez, Abraham Bernstein,
- Abstract summary: Multi-relation question answering (QA) is a challenging task.
Recent methods with explicit multi-step reasoning over KGs have been prominently used in this task.
We argue that multi-relation QA can be achieved via end-to-end single-step implicit reasoning.
- Score: 12.354648004427824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-relation question answering (QA) is a challenging task, where given questions usually require long reasoning chains in KGs that consist of multiple relations. Recently, methods with explicit multi-step reasoning over KGs have been prominently used in this task and have demonstrated promising performance. Examples include methods that perform stepwise label propagation through KG triples and methods that navigate over KG triples based on reinforcement learning. A main weakness of these methods is that their reasoning mechanisms are usually complex and difficult to implement or train. In this paper, we argue that multi-relation QA can be achieved via end-to-end single-step implicit reasoning, which is simpler, more efficient, and easier to adopt. We propose QAGCN -- a Question-Aware Graph Convolutional Network (GCN)-based method that includes a novel GCN architecture with controlled question-dependent message propagation for the implicit reasoning. Extensive experiments have been conducted, where QAGCN achieved competitive and even superior performance compared to state-of-the-art explicit-reasoning methods. Our code and pre-trained models are available in the repository: https://github.com/ruijie-wang-uzh/QAGCN
Related papers
- Graph Reasoning for Question Answering with Triplet Retrieval [33.454090126152714]
We propose a simple yet effective method to retrieve the most relevant triplets from knowledge graphs (KGs)
Our method can outperform state-of-the-art up to 4.6% absolute accuracy.
arXiv Detail & Related papers (2023-05-30T04:46:28Z) - Multi-hop Commonsense Knowledge Injection Framework for Zero-Shot
Commonsense Question Answering [6.086719709100659]
We propose a novel multi-hop commonsense knowledge injection framework.
Our framework achieves state-of-art performance on five commonsense question answering benchmarks.
arXiv Detail & Related papers (2023-05-10T07:13:47Z) - T-SciQ: Teaching Multimodal Chain-of-Thought Reasoning via Mixed Large
Language Model Signals for Science Question Answering [59.63860993280275]
Large Language Models (LLMs) have demonstrated exceptional performance in various Natural Language Processing (NLP) tasks.
We propose a novel method termed T-SciQ that aims at teaching science question answering with LLM signals.
Our approach achieves a new state-of-the-art performance on the ScienceQA benchmark, with an accuracy of 96.18%.
arXiv Detail & Related papers (2023-05-05T11:56:30Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
We propose a framework for complex query answering that decomposes the Knowledge Graph embeddings from neural set operators.
On top of the query graph, we propose the Logical Message Passing Neural Network (LMPNN) that connects the local one-hop inferences on atomic formulas to the global logical reasoning.
Our approach yields the new state-of-the-art neural CQA model.
arXiv Detail & Related papers (2023-01-21T02:34:06Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - VQA-GNN: Reasoning with Multimodal Knowledge via Graph Neural Networks
for Visual Question Answering [79.22069768972207]
We propose VQA-GNN, a new VQA model that performs bidirectional fusion between unstructured and structured multimodal knowledge to obtain unified knowledge representations.
Specifically, we inter-connect the scene graph and the concept graph through a super node that represents the QA context.
On two challenging VQA tasks, our method outperforms strong baseline VQA methods by 3.2% on VCR and 4.6% on GQA, suggesting its strength in performing concept-level reasoning.
arXiv Detail & Related papers (2022-05-23T17:55:34Z) - Modeling Multi-hop Question Answering as Single Sequence Prediction [88.72621430714985]
We propose a simple generative approach (PathFid) that extends the task beyond just answer generation.
PathFid explicitly models the reasoning process to resolve the answer for multi-hop questions.
Our experiments demonstrate that PathFid leads to strong performance gains on two multi-hop QA datasets.
arXiv Detail & Related papers (2022-05-18T21:57:59Z) - Improving Question Answering over Knowledge Graphs Using Graph
Summarization [0.2752817022620644]
Key idea is to represent questions and entities of a Knowledge Graph as low-dimensional embeddings.
We propose a graph summarization technique using Recurrent Convolutional Neural Network (RCNN) and GCN.
The proposed graph summarization technique can be used to tackle the issue that KGQAs cannot answer questions with an uncertain number of answers.
arXiv Detail & Related papers (2022-03-25T10:57:10Z) - Ask to Understand: Question Generation for Multi-hop Question Answering [11.626390908264872]
Multi-hop Question Answering (QA) requires the machine to answer complex questions by finding scattering clues and reasoning from multiple documents.
We propose a novel method to complete multi-hop QA from the perspective of Question Generation (QG)
arXiv Detail & Related papers (2022-03-17T04:02:29Z) - Improving Embedded Knowledge Graph Multi-hop Question Answering by
introducing Relational Chain Reasoning [8.05076085499457]
Knowledge Base Question Answer (KBQA) to answer userquestions from a knowledge base (KB) by identifying reasoning between topic entity and answer.
As a complex branchtask of KBQA, multi-hop KGQA requires reasoning over multi-hop relational chains preserved in structured KG.
arXiv Detail & Related papers (2021-10-25T06:53:02Z) - Counterfactual Variable Control for Robust and Interpretable Question
Answering [57.25261576239862]
Deep neural network based question answering (QA) models are neither robust nor explainable in many cases.
In this paper, we inspect such spurious "capability" of QA models using causal inference.
We propose a novel approach called Counterfactual Variable Control (CVC) that explicitly mitigates any shortcut correlation.
arXiv Detail & Related papers (2020-10-12T10:09:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.