Question-Aware Knowledge Graph Prompting for Enhancing Large Language Models
- URL: http://arxiv.org/abs/2503.23523v1
- Date: Sun, 30 Mar 2025 17:09:11 GMT
- Title: Question-Aware Knowledge Graph Prompting for Enhancing Large Language Models
- Authors: Haochen Liu, Song Wang, Chen Chen, Jundong Li,
- Abstract summary: We propose Question-Aware Knowledge Graph Prompting (QAP), which incorporates question embeddings into GNN aggregation to dynamically assess KG relevance.<n> Experimental results demonstrate that QAP outperforms state-of-the-art methods across multiple datasets, highlighting its effectiveness.
- Score: 51.47994645529258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) often struggle with tasks requiring external knowledge, such as knowledge-intensive Multiple Choice Question Answering (MCQA). Integrating Knowledge Graphs (KGs) can enhance reasoning; however, existing methods typically demand costly fine-tuning or retrieve noisy KG information. Recent approaches leverage Graph Neural Networks (GNNs) to generate KG-based input embedding prefixes as soft prompts for LLMs but fail to account for question relevance, resulting in noisy prompts. Moreover, in MCQA tasks, the absence of relevant KG knowledge for certain answer options remains a significant challenge. To address these issues, we propose Question-Aware Knowledge Graph Prompting (QAP), which incorporates question embeddings into GNN aggregation to dynamically assess KG relevance. QAP employs global attention to capture inter-option relationships, enriching soft prompts with inferred knowledge. Experimental results demonstrate that QAP outperforms state-of-the-art methods across multiple datasets, highlighting its effectiveness.
Related papers
- Knowledge Graph-extended Retrieval Augmented Generation for Question Answering [10.49712834719005]
This paper proposes a system that integrates Large Language Models (LLMs) and Knowledge Graphs (KGs) without requiring training.
The resulting approach can be classified as a specific form of a Retrieval Augmented Generation (RAG) with a KG.
It includes a question decomposition module to enhance multi-hop information retrieval and answerability.
arXiv Detail & Related papers (2025-04-11T18:03:02Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.
This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.
Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Question-guided Knowledge Graph Re-scoring and Injection for Knowledge Graph Question Answering [27.414670144354453]
KGQA involves answering natural language questions by leveraging structured information stored in a knowledge graph.
We propose a Question-guided Knowledge Graph Re-scoring method (Q-KGR) to eliminate noisy pathways for the input question.
We also introduce Knowformer, a parameter-efficient method for injecting the re-scored knowledge graph into large language models to enhance their ability to perform factual reasoning.
arXiv Detail & Related papers (2024-10-02T10:27:07Z) - Dual Reasoning: A GNN-LLM Collaborative Framework for Knowledge Graph Question Answering [38.31983923708175]
We propose Dual-Reasoning, a novel framework that integrates an external system based on Graph Neural Network (GNN) for explicit reasoning on Knowledge Graphs (KGs)<n>We show that DualR achieves state-of-the-art performance while maintaining high efficiency and interpretability.
arXiv Detail & Related papers (2024-06-03T09:38:28Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
We propose a training-free method called Generate-on-Graph (GoG) to generate new factual triples while exploring Knowledge Graphs (KGs)
GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA.
arXiv Detail & Related papers (2024-04-23T04:47:22Z) - Federated Neural Graph Databases [53.03085605769093]
We propose Federated Neural Graph Database (FedNGDB), a novel framework that enables reasoning over multi-source graph-based data while preserving privacy.
Unlike existing methods, FedNGDB can handle complex graph structures and relationships, making it suitable for various downstream tasks.
arXiv Detail & Related papers (2024-02-22T14:57:44Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement.
We conduct experiments on various Large Language Models (LLMs) with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions.
Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases.
arXiv Detail & Related papers (2024-01-23T11:25:34Z) - FusionMind -- Improving question and answering with external context
fusion [0.0]
We studied the impact of contextual knowledge on the Question-answering (QA) objective using pre-trained language models (LMs) and knowledge graphs (KGs)
We found that incorporating knowledge facts context led to a significant improvement in performance.
This suggests that the integration of contextual knowledge facts may be more impactful for enhancing question answering performance.
arXiv Detail & Related papers (2023-12-31T03:51:31Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
We propose a subgraph-aware self-attention mechanism to imitate the GNN for performing structured reasoning.
We also adopt an adaptation tuning strategy to adapt the model parameters with 20,000 subgraphs with synthesized questions.
Experiments show that ReasoningLM surpasses state-of-the-art models by a large margin, even with fewer updated parameters and less training data.
arXiv Detail & Related papers (2023-12-30T07:18:54Z) - QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question
Answering [122.84513233992422]
We propose a new model, QA-GNN, which addresses the problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs)
We show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning.
arXiv Detail & Related papers (2021-04-13T17:32:51Z) - Contextualized Knowledge-aware Attentive Neural Network: Enhancing
Answer Selection with Knowledge [77.77684299758494]
We extensively investigate approaches to enhancing the answer selection model with external knowledge from knowledge graph (KG)
First, we present a context-knowledge interaction learning framework, Knowledge-aware Neural Network (KNN), which learns the QA sentence representations by considering a tight interaction with the external knowledge from KG and the textual information.
To handle the diversity and complexity of KG information, we propose a Contextualized Knowledge-aware Attentive Neural Network (CKANN), which improves the knowledge representation learning with structure information via a customized Graph Convolutional Network (GCN) and comprehensively learns context-based and knowledge-based sentence representation via
arXiv Detail & Related papers (2021-04-12T05:52:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.