論文の概要: Evaluation of Xilinx Deep Learning Processing Unit under Neutron
Irradiation
- arxiv url: http://arxiv.org/abs/2206.01981v1
- Date: Sat, 4 Jun 2022 12:45:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-12 09:50:02.217297
- Title: Evaluation of Xilinx Deep Learning Processing Unit under Neutron
Irradiation
- Title(参考訳): 中性子照射下でのxilinx深層学習装置の評価
- Authors: D. Agiakatsikas, N. Foutris, A. Sari, V. Vlagkoulis, I. Souvatzoglou,
M. Psarakis, M. Luj\'an, M. Kastriotou, C. Cazzaniga
- Abstract要約: Xilinx Ultrascale+ MPSoC上でresnet50モデルを実行するDPUの精度に対するシングルイベントエフェクト(SEE)の影響を分析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies the dependability of the Xilinx Deep-Learning Processing
Unit (DPU) under neutron irradiation. It analyses the impact of Single Event
Effects (SEEs) on the accuracy of the DPU running the resnet50 model on a
Xilinx Ultrascale+ MPSoC.
- Abstract(参考訳): 本稿では,Xilinx Deep-Learning Processing Unit (DPU) の中性子照射による信頼性について検討する。
Xilinx Ultrascale+ MPSoC上でresnet50モデルを実行するDPUの精度に対するシングルイベントエフェクト(SEE)の影響を分析する。
関連論文リスト
- Reconstruction of Particle Flow Energy Distribution Using Deep Learning Algorithms [8.5980103509356]
近年の進歩は、エネルギーマップ再構築のための様々なサブ検出器からの熱量計画像の深層学習による処理である。
本稿では,従来のアルゴリズム-MLP,CNN,U-Net,RNN-を,自己注意と3D畳み込みモジュールを含む変種と比較する。
ジェットイベントのテストデータセットを使用して、異常な高エネルギーイベントを扱う際のモデルの性能を分析し、比較する。
論文 参考訳(メタデータ) (2024-10-08T11:49:18Z) - Denoising Graph Super-Resolution towards Improved Collider Event Reconstruction [0.351124620232225]
本研究は,LHCライクな再構築パイプラインへの超解像技術の統合について検討する。
このソフトウェア前処理のステップは、検出器に物理的に変更を加えることなく、再現性を大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-09-24T12:56:56Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
機械学習は、大規模または高速に生成されたデータセットを含む研究を強化するために使用できる。
本研究では,X線反射法(XRR)のための閉ループワークフローへのMLの導入について述べる。
本研究では,ビームライン制御ソフトウェア環境に付加的なソフトウェア依存関係を導入することなく,実験中の基本データ解析をリアルタイムで行うソリューションを提案する。
論文 参考訳(メタデータ) (2023-06-20T21:21:19Z) - Moving beyond simulation: data-driven quantitative photoacoustic imaging
using tissue-mimicking phantoms [1.5006258585503878]
実験的に良好な画像ファントムとそのデジタル双生児のコレクションを紹介する。
この第1種ファントムデータセットは、吸収係数のピクセルワイズ推定のための実験データに基づくU-Netの教師付きトレーニングを可能にする。
シミュレーションデータによるトレーニングは, シミュレーションと実験の間の領域ギャップを補強し, 評価の成果とバイアスをもたらすことを示す。
論文 参考訳(メタデータ) (2023-06-11T19:12:30Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
機械学習とベイズ最適実験設計(BOED)を組み合わせた方法論を提案する。
本手法は,大規模スピンダイナミクスシミュレーションのためのニューラルネットワークモデルを用いて,BOEDの正確な分布と実用計算を行う。
数値ベンチマークでは,XPFS実験の誘導,モデルパラメータの予測,実験時間内でのより情報的な測定を行う上で,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-03T06:19:20Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - The Preliminary Results on Analysis of TAIGA-IACT Images Using
Convolutional Neural Networks [68.8204255655161]
本研究の目的は,AIGA-IACTに設定された課題を解決するための機械学習アプリケーションの可能性を検討することである。
The method of Convolutional Neural Networks (CNN) was applied to process and analysis Monte-Carlo eventssimulated with CORSIKA。
論文 参考訳(メタデータ) (2021-12-19T15:17:20Z) - X-ray Photon-Counting Data Correction through Deep Learning [3.535670189300134]
深層ニューラルネットワークを用いたPCDデータ補正手法を提案する。
本研究ではまず,電荷分割とパルス蓄積効果を取り入れた完全シミュレーションモデルを構築した。
シミュレーションされたPCDデータと地上の真理のデータは、PCDデータ修正のために特別に設計されたディープ・敵ネットワークに送られる。
論文 参考訳(メタデータ) (2020-07-06T23:29:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。