論文の概要: Combinatorial optimization for low bit-width neural networks
- arxiv url: http://arxiv.org/abs/2206.02006v1
- Date: Sat, 4 Jun 2022 15:02:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-11 15:23:56.450311
- Title: Combinatorial optimization for low bit-width neural networks
- Title(参考訳): 低ビット幅ニューラルネットワークの組合せ最適化
- Authors: Han Zhou, Aida Ashrafi and Matthew B. Blaschko
- Abstract要約: 低ビット幅のニューラルネットワークは、計算資源を減らすためにエッジデバイスに展開するために広く研究されている。
既存のアプローチでは、2段階の列車・圧縮設定における勾配に基づく最適化に焦点が当てられている。
グリーディ座標降下法とこの新しい手法を組み合わせることで、二項分類タスクにおける競合精度が得られることを示す。
- 参考スコア(独自算出の注目度): 23.466606660363016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-bit width neural networks have been extensively explored for deployment
on edge devices to reduce computational resources. Existing approaches have
focused on gradient-based optimization in a two-stage train-and-compress
setting or as a combined optimization where gradients are quantized during
training. Such schemes require high-performance hardware during the training
phase and usually store an equivalent number of full-precision weights apart
from the quantized weights. In this paper, we explore methods of direct
combinatorial optimization in the problem of risk minimization with binary
weights, which can be made equivalent to a non-monotone submodular maximization
under certain conditions. We employ an approximation algorithm for the cases
with single and multilayer neural networks. For linear models, it has
$\mathcal{O}(nd)$ time complexity where $n$ is the sample size and $d$ is the
data dimension. We show that a combination of greedy coordinate descent and
this novel approach can attain competitive accuracy on binary classification
tasks.
- Abstract(参考訳): 低ビット幅ニューラルネットワークは、計算資源を減らすためにエッジデバイスに展開するために広く研究されてきた。
既存のアプローチでは、2段階の列車・コンプレッサー設定における勾配に基づく最適化や、トレーニング中に勾配を定量化する組み合わせ最適化に重点を置いている。
このようなスキームでは、トレーニング段階で高性能なハードウェアが必要であり、通常、量子化された重みとは別に、同等の精度の重みを格納する。
本稿では,二元重み付きリスク最小化問題における直接組合せ最適化の手法について検討する。
単層および多層ニューラルネットワークの場合の近似アルゴリズムを用いる。
線形モデルでは、$\mathcal{o}(nd)$ 時間複雑性を持ち、ここで $n$ はサンプルサイズ、$d$ はデータ次元である。
グリーディ座標降下法とこの新しい手法を組み合わせることで、二項分類タスクにおける競合精度が得られることを示す。
関連論文リスト
- A foundation for exact binarized morphological neural networks [2.8925699537310137]
ディープニューラルネットワーク(NN)のトレーニングと実行は、多くの計算とエネルギー集約的な特別なハードウェアを必要とすることが多い。
計算量と消費電力を減らす方法の1つは二重NNを使うことであるが、これは符号関数が非滑らかな勾配を持つため訓練が困難である。
本研究では,特定の条件下での性能を損なうことなく,ConvNetを二項化できる数学的形態(MM)に基づくモデルを提案する。
論文 参考訳(メタデータ) (2024-01-08T11:37:44Z) - Kronecker-Factored Approximate Curvature for Modern Neural Network
Architectures [85.76673783330334]
線形重み付け層の2つの異なる設定がクロネッカー型近似曲率(K-FAC)の2つの風味を動機付けている
重み付けをそれぞれ設定したディープ・リニア・ネットワークに対して正確であることを示す。
グラフニューラルネットワークと視覚変換器の両方をトレーニングするために、これらの2つのK-FACの違いをほとんど観測しない。
論文 参考訳(メタデータ) (2023-11-01T16:37:00Z) - On Model Compression for Neural Networks: Framework, Algorithm, and Convergence Guarantee [21.818773423324235]
本稿では,低ランク近似と重み近似の2つのモデル圧縮手法に焦点を当てた。
本稿では,非最適化の新たな視点から,モデル圧縮のための全体論的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-13T02:14:42Z) - Decentralized Gossip-Based Stochastic Bilevel Optimization over
Communication Networks [42.76623191830371]
本稿では,ゴシップに基づく分散二段階最適化アルゴリズムを提案する。
エージェントはネットワークと外部の両方の問題を一度に解くことができる。
我々のアルゴリズムは最先端の効率とテスト精度を達成する。
論文 参考訳(メタデータ) (2022-06-22T06:38:54Z) - Algorithms for Efficiently Learning Low-Rank Neural Networks [12.916132936159713]
低ランクニューラルネットワークの学習アルゴリズムについて検討する。
単層ReLUネットワークに最適な低ランク近似を学習するアルゴリズムを提案する。
低ランク$textitdeep$ネットワークをトレーニングするための新しい低ランクフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-02T01:08:29Z) - Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [67.33850633281803]
品質を犠牲にすることなく、より小さなネットワークを使用できる汎用的な新しい入力符号化を提案する。
小さなニューラルネットワークは、勾配降下によって値が最適化された訓練可能な特徴ベクトルの多分解能ハッシュテーブルによって拡張される。
数桁の高速化を実現し、高品質なニューラルネットワークプリミティブを数秒でトレーニングすることができる。
論文 参考訳(メタデータ) (2022-01-16T07:22:47Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - FracBits: Mixed Precision Quantization via Fractional Bit-Widths [29.72454879490227]
混合精度量子化は、複数のビット幅での算術演算をサポートするカスタマイズハードウェアで好適である。
本稿では,目標計算制約下での混合精度モデルに基づく学習に基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-04T06:09:09Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Optimal Gradient Quantization Condition for Communication-Efficient
Distributed Training [99.42912552638168]
勾配の通信は、コンピュータビジョンアプリケーションで複数のデバイスでディープニューラルネットワークをトレーニングするのに費用がかかる。
本研究は,textbfANY勾配分布に対する二値および多値勾配量子化の最適条件を導出する。
最適条件に基づいて, 偏差BinGradと非偏差ORQの2値勾配量子化と多値勾配量子化の2つの新しい量子化手法を開発した。
論文 参考訳(メタデータ) (2020-02-25T18:28:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。