Guided Deep Metric Learning
- URL: http://arxiv.org/abs/2206.02029v1
- Date: Sat, 4 Jun 2022 17:34:11 GMT
- Title: Guided Deep Metric Learning
- Authors: Jorge Gonzalez-Zapata, Ivan Reyes-Amezcua, Daniel Flores-Araiza,
Mauricio Mendez-Ruiz, Gilberto Ochoa-Ruiz and Andres Mendez-Vazquez
- Abstract summary: We propose a novel approach to DML that we call Guided Deep Metric Learning.
The proposed method is capable of a better manifold generalization and representation to up to 40% improvement.
- Score: 0.9786690381850356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Metric Learning (DML) methods have been proven relevant for visual
similarity learning. However, they sometimes lack generalization properties
because they are trained often using an inappropriate sample selection strategy
or due to the difficulty of the dataset caused by a distributional shift in the
data. These represent a significant drawback when attempting to learn the
underlying data manifold. Therefore, there is a pressing need to develop better
ways of obtaining generalization and representation of the underlying manifold.
In this paper, we propose a novel approach to DML that we call Guided Deep
Metric Learning, a novel architecture oriented to learning more compact
clusters, improving generalization under distributional shifts in DML. This
novel architecture consists of two independent models: A multi-branch master
model, inspired from a Few-Shot Learning (FSL) perspective, generates a reduced
hypothesis space based on prior knowledge from labeled data, which guides or
regularizes the decision boundary of a student model during training under an
offline knowledge distillation scheme. Experiments have shown that the proposed
method is capable of a better manifold generalization and representation to up
to 40% improvement (Recall@1, CIFAR10), using guidelines suggested by Musgrave
et al. to perform a more fair and realistic comparison, which is currently
absent in the literature
Related papers
- SpecRaGE: Robust and Generalizable Multi-view Spectral Representation Learning [9.393841121141076]
Multi-view representation learning (MvRL) has garnered substantial attention in recent years.
graph Laplacian-based MvRL methods have demonstrated remarkable success in representing multi-view data.
We introduce $textitSpecRaGE$, a novel fusion-based framework that integrates the strengths of graph Laplacian methods with the power of deep learning.
arXiv Detail & Related papers (2024-11-04T14:51:35Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
Continual Learning aims to overcome the catastrophic forgetting of former knowledge when learning new ones.
This paper presents a comprehensive survey of the latest advancements in PTM-based CL.
arXiv Detail & Related papers (2024-01-29T18:27:52Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
Large neural models (such as Transformers) achieve state-of-the-art performance for information retrieval (IR)
We propose a novel distillation approach that leverages the relative geometry among queries and documents learned by the large teacher model.
We show that our approach successfully distills from both dual-encoder (DE) and cross-encoder (CE) teacher models to 1/10th size asymmetric students that can retain 95-97% of the teacher performance.
arXiv Detail & Related papers (2023-01-27T22:04:37Z) - Who Explains the Explanation? Quantitatively Assessing Feature
Attribution Methods [0.0]
We propose a novel evaluation metric -- the Focus -- designed to quantify the faithfulness of explanations.
We show the robustness of the metric through randomization experiments, and then use Focus to evaluate and compare three popular explainability techniques.
Our results find LRP and GradCAM to be consistent and reliable, while the latter remains most competitive even when applied to poorly performing models.
arXiv Detail & Related papers (2021-09-28T07:10:24Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - Revisiting Training Strategies and Generalization Performance in Deep
Metric Learning [28.54755295856929]
We revisit the most widely used DML objective functions and conduct a study of the crucial parameter choices.
Under consistent comparison, DML objectives show much higher saturation than indicated by literature.
Exploiting these insights, we propose a simple, yet effective, training regularization to reliably boost the performance of ranking-based DML models.
arXiv Detail & Related papers (2020-02-19T22:16:12Z) - Learning From Multiple Experts: Self-paced Knowledge Distillation for
Long-tailed Classification [106.08067870620218]
We propose a self-paced knowledge distillation framework, termed Learning From Multiple Experts (LFME)
We refer to these models as 'Experts', and the proposed LFME framework aggregates the knowledge from multiple 'Experts' to learn a unified student model.
We conduct extensive experiments and demonstrate that our method is able to achieve superior performances compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-01-06T12:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.