SpecRaGE: Robust and Generalizable Multi-view Spectral Representation Learning
- URL: http://arxiv.org/abs/2411.02138v1
- Date: Mon, 04 Nov 2024 14:51:35 GMT
- Title: SpecRaGE: Robust and Generalizable Multi-view Spectral Representation Learning
- Authors: Amitai Yacobi, Ofir Lindenbaum, Uri Shaham,
- Abstract summary: Multi-view representation learning (MvRL) has garnered substantial attention in recent years.
graph Laplacian-based MvRL methods have demonstrated remarkable success in representing multi-view data.
We introduce $textitSpecRaGE$, a novel fusion-based framework that integrates the strengths of graph Laplacian methods with the power of deep learning.
- Score: 9.393841121141076
- License:
- Abstract: Multi-view representation learning (MvRL) has garnered substantial attention in recent years, driven by the increasing demand for applications that can effectively process and analyze data from multiple sources. In this context, graph Laplacian-based MvRL methods have demonstrated remarkable success in representing multi-view data. However, these methods often struggle with generalization to new data and face challenges with scalability. Moreover, in many practical scenarios, multi-view data is contaminated by noise or outliers. In such cases, modern deep-learning-based MvRL approaches that rely on alignment or contrastive objectives can lead to misleading results, as they may impose incorrect consistency between clear and corrupted data sources. We introduce $\textit{SpecRaGE}$, a novel fusion-based framework that integrates the strengths of graph Laplacian methods with the power of deep learning to overcome these challenges. SpecRage uses neural networks to learn parametric mapping that approximates a joint diagonalization of graph Laplacians. This solution bypasses the need for alignment while enabling generalizable and scalable learning of informative and meaningful representations. Moreover, it incorporates a meta-learning fusion module that dynamically adapts to data quality, ensuring robustness against outliers and noisy views. Our extensive experiments demonstrate that SpecRaGE outperforms state-of-the-art methods, particularly in scenarios with data contamination, paving the way for more reliable and efficient multi-view learning. Our code will be made publicly available upon acceptance.
Related papers
- Towards Multi-view Graph Anomaly Detection with Similarity-Guided Contrastive Clustering [35.1801853090859]
Anomaly detection on graphs plays an important role in many real-world applications.
We propose an autoencoder-based clustering framework regularized by a similarity-guided contrastive loss to detect anomalous nodes.
arXiv Detail & Related papers (2024-09-15T15:41:59Z) - Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
We propose a novel method named Regularized Contrastive Partial Multi-view Outlier Detection (RCPMOD)
In this framework, we utilize contrastive learning to learn view-consistent information and distinguish outliers by the degree of consistency.
Experimental results on four benchmark datasets demonstrate that our proposed approach could outperform state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-02T14:34:27Z) - Hierarchical Mutual Information Analysis: Towards Multi-view Clustering
in The Wild [9.380271109354474]
This work proposes a deep MVC framework where data recovery and alignment are fused in a hierarchically consistent way to maximize the mutual information among different views.
To the best of our knowledge, this could be the first successful attempt to handle the missing and unaligned data problem separately with different learning paradigms.
arXiv Detail & Related papers (2023-10-28T06:43:57Z) - Multi-view Fuzzy Representation Learning with Rules based Model [25.997490574254172]
Unsupervised multi-view representation learning has been extensively studied for mining multi-view data.
This paper proposes a new multi-view fuzzy representation learning method based on the interpretable Takagi-Sugeno-Kang fuzzy system (MVRL_FS)
arXiv Detail & Related papers (2023-09-20T17:13:15Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Learnable Graph Convolutional Network and Feature Fusion for Multi-view
Learning [30.74535386745822]
This paper proposes a joint deep learning framework called Learnable Graph Convolutional Network and Feature Fusion (LGCN-FF)
It consists of two stages: feature fusion network and learnable graph convolutional network.
The proposed LGCN-FF is validated to be superior to various state-of-the-art methods in multi-view semi-supervised classification.
arXiv Detail & Related papers (2022-11-16T19:07:12Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields.
We propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
arXiv Detail & Related papers (2022-11-08T09:19:32Z) - Latent Heterogeneous Graph Network for Incomplete Multi-View Learning [57.49776938934186]
We propose a novel Latent Heterogeneous Graph Network (LHGN) for incomplete multi-view learning.
By learning a unified latent representation, a trade-off between consistency and complementarity among different views is implicitly realized.
To avoid any inconsistencies between training and test phase, a transductive learning technique is applied based on graph learning for classification tasks.
arXiv Detail & Related papers (2022-08-29T15:14:21Z) - MORI-RAN: Multi-view Robust Representation Learning via Hybrid
Contrastive Fusion [4.36488705757229]
Multi-view representation learning is essential for many multi-view tasks, such as clustering and classification.
We propose a hybrid contrastive fusion algorithm to extract robust view-common representation from unlabeled data.
Experimental results demonstrated that the proposed method outperforms 12 competitive multi-view methods on four real-world datasets.
arXiv Detail & Related papers (2022-08-26T09:58:37Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
We design several variational information bottlenecks to exploit two key characteristics for multi-view representation learning.
Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels.
arXiv Detail & Related papers (2022-06-20T03:09:46Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.