論文の概要: Interpretable Models Capable of Handling Systematic Missingness in
Imbalanced Classes and Heterogeneous Datasets
- arxiv url: http://arxiv.org/abs/2206.02056v1
- Date: Sat, 4 Jun 2022 20:20:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 14:00:45.777333
- Title: Interpretable Models Capable of Handling Systematic Missingness in
Imbalanced Classes and Heterogeneous Datasets
- Title(参考訳): 不均衡クラスと不均一データセットの体系的欠如を処理可能な解釈可能なモデル
- Authors: Sreejita Ghosh (1, 5,6), Elizabeth S. Baranowski (2), Michael Biehl
(1,2,3), Wiebke Arlt (2), Peter Tino (4), and Kerstin Bunte (1) ((1)
Bernoulli Institute of Mathematics, Computer Science and Artificial
Intelligence, University of Groningen, The Netherlands (2) Institute of
Metabolism and Systems Research, University of Birmingham, the United Kingdom
(3) Systems Modelling and Quantitative Biomedicine, IMSR, University of
Birmingham, the United Kingdom (4) School of Computer Science, University of
Birmingham, the United Kingdom (5) Utrecht University, The Netherlands (6)
University Medical Centrum Utrecht, The Netherlands)
- Abstract要約: 解釈可能な機械学習技術の医療データセットへの応用は、データのより深い洞察を得るとともに、早期かつ迅速な診断を容易にする。
医療データセットは、異種測定、サンプルサイズが制限された不均衡クラス、欠落データなどの一般的な問題に直面している。
本稿では,これらの問題に対処可能なプロトタイプベース (PB) 解釈モデル群を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Application of interpretable machine learning techniques on medical datasets
facilitate early and fast diagnoses, along with getting deeper insight into the
data. Furthermore, the transparency of these models increase trust among
application domain experts. Medical datasets face common issues such as
heterogeneous measurements, imbalanced classes with limited sample size, and
missing data, which hinder the straightforward application of machine learning
techniques. In this paper we present a family of prototype-based (PB)
interpretable models which are capable of handling these issues. The models
introduced in this contribution show comparable or superior performance to
alternative techniques applicable in such situations. However, unlike ensemble
based models, which have to compromise on easy interpretation, the PB models
here do not. Moreover we propose a strategy of harnessing the power of
ensembles while maintaining the intrinsic interpretability of the PB models, by
averaging the model parameter manifolds. All the models were evaluated on a
synthetic (publicly available dataset) in addition to detailed analyses of two
real-world medical datasets (one publicly available). Results indicated that
the models and strategies we introduced addressed the challenges of real-world
medical data, while remaining computationally inexpensive and transparent, as
well as similar or superior in performance compared to their alternatives.
- Abstract(参考訳): 解釈可能な機械学習技術の医療データセットへの応用は、データのより深い洞察を得るとともに、早期かつ迅速な診断を容易にする。
さらに、これらのモデルの透明性は、アプリケーションドメインの専門家の信頼を高める。
医療データセットは、異種測定、サンプルサイズが制限された不均衡クラス、欠落データなどの一般的な問題に直面しており、機械学習技術の直接的な適用を妨げる。
本稿では,これらの問題を処理可能なプロトタイプベース (pb) 解釈可能なモデル群について述べる。
このコントリビューションで導入されたモデルは、このような状況で適用可能な代替技術と同等または優れたパフォーマンスを示す。
しかし、簡単な解釈を妥協しなければならないアンサンブルベースのモデルとは異なり、pbモデルはそうではない。
さらに,モデルパラメータ多様体を平均化することにより,pbモデルの固有解釈性を維持しつつアンサンブルのパワーを活用する手法を提案する。
すべてのモデルは、2つの現実世界の医療データセットの詳細な分析に加えて、合成データセット(パブリックデータセット)で評価された。
その結果,提案したモデルと戦略は実世界の医療データの課題に対処しつつ,計算コストが安価で透明でありながら,その代替品と同等あるいは優れた性能を保っていることがわかった。
関連論文リスト
- Challenging the Performance-Interpretability Trade-off: An Evaluation of Interpretable Machine Learning Models [3.3595341706248876]
一般化加法モデル(GAM)は、完全に解釈可能でありながら、複雑で非線形なパターンをキャプチャするための有望な特性を提供する。
本研究では、20のベンチマークデータセットの収集に基づいて、7つのGAMの予測性能を7つの機械学習モデルと比較した。
論文 参考訳(メタデータ) (2024-09-22T12:58:52Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
データ不足は機械学習(ML)モデリングの課題となる可能性がある。
現在のアプローチは、特徴計算とラベル予測に分類される。
本研究は、観測データに欠落した値でモデル化するコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T13:16:24Z) - Exploration of the Rashomon Set Assists Trustworthy Explanations for
Medical Data [4.499833362998488]
本稿では,Rashomon集合におけるモデル探索の新たなプロセスを紹介し,従来のモデリング手法を拡張した。
動作の異なるモデルを検出するために,$textttRashomon_DETECT$アルゴリズムを提案する。
モデル間の変動効果の差を定量化するために,機能的データ解析に基づくプロファイル分散指数(PDI)を導入する。
論文 参考訳(メタデータ) (2023-08-22T13:53:43Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
我々は、モデル選択に影響を及ぼす可能性のある重要な要因の観点から、複数のモデリング問題に対して異なるモデリングアプローチを体系的に比較する。
その結果,非凝集性予測性能が最も高いモデルでは,行動指標やアグリゲーションモードのシェアが低下することが示唆された。
MNLモデルは様々な状況において堅牢に機能するが、ML手法はWillingness to Payのような行動指標の推定を改善することができる。
論文 参考訳(メタデータ) (2023-01-11T11:10:32Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Using Explainable Boosting Machine to Compare Idiographic and Nomothetic
Approaches for Ecological Momentary Assessment Data [2.0824228840987447]
本稿では,非線形解釈型機械学習(ML)モデルを用いた分類問題について検討する。
木々の様々なアンサンブルは、不均衡な合成データセットと実世界のデータセットを用いて線形モデルと比較される。
2つの実世界のデータセットのうちの1つで、知識蒸留法は改善されたAUCスコアを達成する。
論文 参考訳(メタデータ) (2022-04-04T17:56:37Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
ドメインに依存しない方法で生成モデルの忠実度,多様性,一般化性能を特徴付ける3次元評価指標を提案する。
当社のメトリクスは、精度リコール分析により統計的発散測定を統合し、モデル忠実度と多様性のサンプルおよび分布レベルの診断を可能にします。
論文 参考訳(メタデータ) (2021-02-17T18:25:30Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - CHEER: Rich Model Helps Poor Model via Knowledge Infusion [69.23072792708263]
我々は、そのようなリッチなモデルを伝達可能な表現に簡潔に要約できる知識注入フレームワークCHEERを開発した。
実験の結果、CHEERは複数の生理的データセットのマクロF1スコアにおいて、ベースラインを5.60%から46.80%上回った。
論文 参考訳(メタデータ) (2020-05-21T21:44:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。