論文の概要: Zero-Shot Voice Conditioning for Denoising Diffusion TTS Models
- arxiv url: http://arxiv.org/abs/2206.02246v1
- Date: Sun, 5 Jun 2022 19:45:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-08 09:21:30.341615
- Title: Zero-Shot Voice Conditioning for Denoising Diffusion TTS Models
- Title(参考訳): 拡散TSモデルのためのゼロショット音声条件付け
- Authors: Alon Levkovitch, Eliya Nachmani, Lior Wolf
- Abstract要約: 本研究では,事前学習した拡散音声モデルを用いて,学習中に見つからない新人の声で音声を生成する手法を提案する。
この方法は、対象者からの短い(3秒)サンプルを必要とし、生成は、トレーニングステップなしで、推論時に操縦される。
- 参考スコア(独自算出の注目度): 95.97506031821217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel way of conditioning a pretrained denoising diffusion
speech model to produce speech in the voice of a novel person unseen during
training. The method requires a short (~3 seconds) sample from the target
person, and generation is steered at inference time, without any training
steps. At the heart of the method lies a sampling process that combines the
estimation of the denoising model with a low-pass version of the new speaker's
sample. The objective and subjective evaluations show that our sampling method
can generate a voice similar to that of the target speaker in terms of
frequency, with an accuracy comparable to state-of-the-art methods, and without
training.
- Abstract(参考訳): 本稿では,事前学習した発声拡散音声モデルを用いて,未学習者の声で音声を生成する新しい方法を提案する。
この方法は対象者からの短い(約3秒)サンプルを必要とし、推論時に生成はトレーニングステップなしで操作される。
この手法の核心にあるサンプリングプロセスは、発声モデルの推定と、新しい話者のサンプルのローパスバージョンとを組み合わせたものである。
客観的・主観的評価により,本サンプリング法では,話者の発声周波数に類似した音声を,最先端の手法に匹敵する精度で,訓練なしで生成できることを示す。
関連論文リスト
- Diffusion-based speech enhancement with a weighted generative-supervised
learning loss [0.0]
拡散に基づく生成モデルは近年,音声強調(SE)において注目を集めている。
そこで本研究では,従来の拡散訓練目標を平均二乗誤差(MSE)損失で拡張することを提案する。
論文 参考訳(メタデータ) (2023-09-19T09:13:35Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
生成学習の観点からSED問題を再構築する。
具体的には,騒音拡散過程において,雑音のある提案から音の時間境界を生成することを目的としている。
トレーニング中は,ノイズの多い遅延クエリを基本バージョンに変換することで,ノイズ発生過程の逆転を学習する。
論文 参考訳(メタデータ) (2023-08-14T17:29:41Z) - On monoaural speech enhancement for automatic recognition of real noisy
speech using mixture invariant training [33.79711018198589]
既存の混合不変訓練基準を拡張して、未ペア音声と実雑音データの両方を利用する。
実雑音音声から分離した音声の品質を向上させるためには, 未ペアクリーン音声が不可欠であることがわかった。
提案手法は、処理成果物を軽減するために、処理された信号と処理されていない信号のリミックスも行う。
論文 参考訳(メタデータ) (2022-05-03T19:37:58Z) - Self-Normalized Importance Sampling for Neural Language Modeling [97.96857871187052]
本研究では, 自己正規化重要度サンプリングを提案し, これまでの研究と比較すると, 本研究で考慮された基準は自己正規化されており, さらに修正を行う必要はない。
提案する自己正規化重要度サンプリングは,研究指向と生産指向の両方の自動音声認識タスクにおいて競合することを示す。
論文 参考訳(メタデータ) (2021-11-11T16:57:53Z) - Test-Time Adaptation Toward Personalized Speech Enhancement: Zero-Shot
Learning with Knowledge Distillation [26.39206098000297]
小型消音モデルをテスト時間特異性に適応させる新しいパーソナライズ音声強調法を提案する。
このテストタイム適応の目標は、テスト話者のクリーンな音声ターゲットを使わないことです。
欠落しているクリーンな発話ターゲットの代わりに、過度に大きな教師モデルからより高度な消音結果を蒸留します。
論文 参考訳(メタデータ) (2021-05-08T00:42:03Z) - On Sampling-Based Training Criteria for Neural Language Modeling [97.35284042981675]
我々はモンテカルロサンプリング、重要サンプリング、補償部分和と呼ばれる新しい方法、およびノイズコントラスト推定を検討する。
対象のクラス後部確率を補正しさえすれば,これらすべてのサンプリング手法が同等に動作可能であることを示す。
Switchboard と LibriSpeech における言語モデリングと音声認識の実験結果が,我々の主張を支持した。
論文 参考訳(メタデータ) (2021-04-21T12:55:52Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency) というノイズロバスト手法を提案する。
具体的には、対照的な学習方法でネットワークをトレーニングする。
各サンプルの2つの異なるビューからの予測は、クリーンまたは分布不足の「可能性」を推定するために使用されます。
論文 参考訳(メタデータ) (2021-03-24T07:26:07Z) - Unsupervised Cross-Domain Singing Voice Conversion [105.1021715879586]
任意の同一性から音声変換を行うタスクに対して,wav-to-wav生成モデルを提案する。
提案手法は,自動音声認識のタスクのために訓練された音響モデルとメロディ抽出機能の両方を用いて波形ベースジェネレータを駆動する。
論文 参考訳(メタデータ) (2020-08-06T18:29:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。