Hashing Learning with Hyper-Class Representation
- URL: http://arxiv.org/abs/2206.02334v1
- Date: Mon, 6 Jun 2022 03:35:45 GMT
- Title: Hashing Learning with Hyper-Class Representation
- Authors: Shichao Zhang and Jiaye Li
- Abstract summary: Existing unsupervised hash learning is a kind of attribute-centered calculation.
It may not accurately preserve the similarity between data.
In this paper, a hash algorithm is proposed with a hyper-class representation.
- Score: 8.206031417113987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing unsupervised hash learning is a kind of attribute-centered
calculation. It may not accurately preserve the similarity between data. This
leads to low down the performance of hash function learning. In this paper, a
hash algorithm is proposed with a hyper-class representation. It is a two-steps
approach. The first step finds potential decision features and establish
hyper-class. The second step constructs hash learning based on the hyper-class
information in the first step, so that the hash codes of the data within the
hyper-class are as similar as possible, as well as the hash codes of the data
between the hyper-classes are as different as possible. To evaluate the
efficiency, a series of experiments are conducted on four public datasets. The
experimental results show that the proposed hash algorithm is more efficient
than the compared algorithms, in terms of mean average precision (MAP), average
precision (AP) and Hamming radius 2 (HAM2)
Related papers
- Unified Functional Hashing in Automatic Machine Learning [58.77232199682271]
We show that large efficiency gains can be obtained by employing a fast unified functional hash.
Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently.
We show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery.
arXiv Detail & Related papers (2023-02-10T18:50:37Z) - A Lower Bound of Hash Codes' Performance [122.88252443695492]
In this paper, we prove that inter-class distinctiveness and intra-class compactness among hash codes determine the lower bound of hash codes' performance.
We then propose a surrogate model to fully exploit the above objective by estimating the posterior of hash codes and controlling it, which results in a low-bias optimization.
By testing on a series of hash-models, we obtain performance improvements among all of them, with an up to $26.5%$ increase in mean Average Precision and an up to $20.5%$ increase in accuracy.
arXiv Detail & Related papers (2022-10-12T03:30:56Z) - Asymmetric Scalable Cross-modal Hashing [51.309905690367835]
Cross-modal hashing is a successful method to solve large-scale multimedia retrieval issue.
We propose a novel Asymmetric Scalable Cross-Modal Hashing (ASCMH) to address these issues.
Our ASCMH outperforms the state-of-the-art cross-modal hashing methods in terms of accuracy and efficiency.
arXiv Detail & Related papers (2022-07-26T04:38:47Z) - Learning to Hash Naturally Sorts [84.90210592082829]
We introduce Naturally-Sorted Hashing (NSH) to train a deep hashing model with sorted results end-to-end.
NSH sort the Hamming distances of samples' hash codes and accordingly gather their latent representations for self-supervised training.
We describe a novel Sorted Noise-Contrastive Estimation (SortedNCE) loss that selectively picks positive and negative samples for contrastive learning.
arXiv Detail & Related papers (2022-01-31T16:19:02Z) - Deep Self-Adaptive Hashing for Image Retrieval [16.768754022585057]
We propose a textbfDeep Self-Adaptive Hashing(DSAH) model to adaptively capture the semantic information with two special designs.
First, we construct a neighborhood-based similarity matrix, and then refine this initial similarity matrix with a novel update strategy.
Secondly, we measure the priorities of data pairs with PIC and assign adaptive weights to them, which is relies on the assumption that more dissimilar data pairs contain more discriminative information for hash learning.
arXiv Detail & Related papers (2021-08-16T13:53:20Z) - Online Hashing with Similarity Learning [31.372269816123996]
We propose a novel online hashing framework without updating binary codes.
In the proposed framework, the hash functions are fixed and a parametric similarity function for the binary codes is learnt online.
Experiments on two multi-label image datasets show that our method is competitive or outperforms the state-of-the-art online hashing methods.
arXiv Detail & Related papers (2021-07-04T12:42:29Z) - Unsupervised Multi-Index Semantic Hashing [23.169142004594434]
We propose an unsupervised hashing model that learns hash codes that are both effective and highly efficient by being optimized for multi-index hashing.
We experimentally compare MISH to state-of-the-art semantic hashing baselines in the task of document similarity search.
We find that even though multi-index hashing also improves the efficiency of the baselines compared to a linear scan, they are still upwards of 33% slower than MISH.
arXiv Detail & Related papers (2021-03-26T13:33:48Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
We propose a new method named textbfComprehensive stextbfImilarity textbfMining and ctextbfOnsistency leartextbfNing (CIMON)
First, we use global refinement and similarity statistical distribution to obtain reliable and smooth guidance. Second, both semantic and contrastive consistency learning are introduced to derive both disturb-invariant and discriminative hash codes.
arXiv Detail & Related papers (2020-10-15T14:47:14Z) - Deep Momentum Uncertainty Hashing [65.27971340060687]
We propose a novel Deep Momentum Uncertainty Hashing (DMUH)
It explicitly estimates the uncertainty during training and leverages the uncertainty information to guide the approximation process.
Our method achieves the best performance on all of the datasets and surpasses existing state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-09-17T01:57:45Z) - Image Hashing by Minimizing Discrete Component-wise Wasserstein Distance [12.968141477410597]
Adversarial autoencoders are shown to be able to implicitly learn a robust, locality-preserving hash function that generates balanced and high-quality hash codes.
The existing adversarial hashing methods are inefficient to be employed for large-scale image retrieval applications.
We propose a new adversarial-autoencoder hashing approach that has a much lower sample requirement and computational cost.
arXiv Detail & Related papers (2020-02-29T00:22:53Z) - A Novel Incremental Cross-Modal Hashing Approach [21.99741793652628]
We propose a novel incremental cross-modal hashing algorithm termed "iCMH"
The proposed approach consists of two sequential stages, namely, learning the hash codes and training the hash functions.
Experiments across a variety of cross-modal datasets and comparisons with state-of-the-art cross-modal algorithms shows the usefulness of our approach.
arXiv Detail & Related papers (2020-02-03T12:34:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.