Image Hashing by Minimizing Discrete Component-wise Wasserstein Distance
- URL: http://arxiv.org/abs/2003.00134v3
- Date: Tue, 26 May 2020 01:33:29 GMT
- Title: Image Hashing by Minimizing Discrete Component-wise Wasserstein Distance
- Authors: Khoa D. Doan and Saurav Manchanda and Sarkhan Badirli and Chandan K.
Reddy
- Abstract summary: Adversarial autoencoders are shown to be able to implicitly learn a robust, locality-preserving hash function that generates balanced and high-quality hash codes.
The existing adversarial hashing methods are inefficient to be employed for large-scale image retrieval applications.
We propose a new adversarial-autoencoder hashing approach that has a much lower sample requirement and computational cost.
- Score: 12.968141477410597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image hashing is one of the fundamental problems that demand both efficient
and effective solutions for various practical scenarios. Adversarial
autoencoders are shown to be able to implicitly learn a robust,
locality-preserving hash function that generates balanced and high-quality hash
codes. However, the existing adversarial hashing methods are inefficient to be
employed for large-scale image retrieval applications. Specifically, they
require an exponential number of samples to be able to generate optimal hash
codes and a significantly high computational cost to train. In this paper, we
show that the high sample-complexity requirement often results in sub-optimal
retrieval performance of the adversarial hashing methods. To address this
challenge, we propose a new adversarial-autoencoder hashing approach that has a
much lower sample requirement and computational cost. Specifically, by
exploiting the desired properties of the hash function in the low-dimensional,
discrete space, our method efficiently estimates a better variant of
Wasserstein distance by averaging a set of easy-to-compute one-dimensional
Wasserstein distances. The resulting hashing approach has an order-of-magnitude
better sample complexity, thus better generalization property, compared to the
other adversarial hashing methods. In addition, the computational cost is
significantly reduced using our approach. We conduct experiments on several
real-world datasets and show that the proposed method outperforms the competing
hashing methods, achieving up to 10% improvement over the current
state-of-the-art image hashing methods. The code accompanying this paper is
available on Github (https://github.com/khoadoan/adversarial-hashing).
Related papers
- Cascading Hierarchical Networks with Multi-task Balanced Loss for
Fine-grained hashing [1.6244541005112747]
Fine-grained hashing is more challenging than traditional hashing problems.
We propose a cascaded network to learn compact and highly semantic hash codes.
We also propose a novel approach to coordinately balance the loss of multi-task learning.
arXiv Detail & Related papers (2023-03-20T17:08:48Z) - Unified Functional Hashing in Automatic Machine Learning [58.77232199682271]
We show that large efficiency gains can be obtained by employing a fast unified functional hash.
Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently.
We show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery.
arXiv Detail & Related papers (2023-02-10T18:50:37Z) - A Lower Bound of Hash Codes' Performance [122.88252443695492]
In this paper, we prove that inter-class distinctiveness and intra-class compactness among hash codes determine the lower bound of hash codes' performance.
We then propose a surrogate model to fully exploit the above objective by estimating the posterior of hash codes and controlling it, which results in a low-bias optimization.
By testing on a series of hash-models, we obtain performance improvements among all of them, with an up to $26.5%$ increase in mean Average Precision and an up to $20.5%$ increase in accuracy.
arXiv Detail & Related papers (2022-10-12T03:30:56Z) - Asymmetric Scalable Cross-modal Hashing [51.309905690367835]
Cross-modal hashing is a successful method to solve large-scale multimedia retrieval issue.
We propose a novel Asymmetric Scalable Cross-Modal Hashing (ASCMH) to address these issues.
Our ASCMH outperforms the state-of-the-art cross-modal hashing methods in terms of accuracy and efficiency.
arXiv Detail & Related papers (2022-07-26T04:38:47Z) - Self-Distilled Hashing for Deep Image Retrieval [25.645550298697938]
In hash-based image retrieval systems, transformed input from the original usually generates different codes.
We propose a novel self-distilled hashing scheme to minimize the discrepancy while exploiting the potential of augmented data.
We also introduce hash proxy-based similarity learning and binary cross entropy-based quantization loss to provide fine quality hash codes.
arXiv Detail & Related papers (2021-12-16T12:01:50Z) - Representation Learning for Efficient and Effective Similarity Search
and Recommendation [6.280255585012339]
This thesis makes contributions to representation learning that improve effectiveness of hash codes through more expressive representations and a more effective similarity measure.
The contributions are empirically validated on several tasks related to similarity search and recommendation.
arXiv Detail & Related papers (2021-09-04T08:19:01Z) - Unsupervised Multi-Index Semantic Hashing [23.169142004594434]
We propose an unsupervised hashing model that learns hash codes that are both effective and highly efficient by being optimized for multi-index hashing.
We experimentally compare MISH to state-of-the-art semantic hashing baselines in the task of document similarity search.
We find that even though multi-index hashing also improves the efficiency of the baselines compared to a linear scan, they are still upwards of 33% slower than MISH.
arXiv Detail & Related papers (2021-03-26T13:33:48Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
We propose a new method named textbfComprehensive stextbfImilarity textbfMining and ctextbfOnsistency leartextbfNing (CIMON)
First, we use global refinement and similarity statistical distribution to obtain reliable and smooth guidance. Second, both semantic and contrastive consistency learning are introduced to derive both disturb-invariant and discriminative hash codes.
arXiv Detail & Related papers (2020-10-15T14:47:14Z) - Reinforcing Short-Length Hashing [61.75883795807109]
Existing methods have poor performance in retrieval using an extremely short-length hash code.
In this study, we propose a novel reinforcing short-length hashing (RSLH)
In this proposed RSLH, mutual reconstruction between the hash representation and semantic labels is performed to preserve the semantic information.
Experiments on three large-scale image benchmarks demonstrate the superior performance of RSLH under various short-length hashing scenarios.
arXiv Detail & Related papers (2020-04-24T02:23:52Z) - Targeted Attack for Deep Hashing based Retrieval [57.582221494035856]
We propose a novel method, dubbed deep hashing targeted attack (DHTA), to study the targeted attack on such retrieval.
We first formulate the targeted attack as a point-to-set optimization, which minimizes the average distance between the hash code of an adversarial example and those of a set of objects with the target label.
To balance the performance and perceptibility, we propose to minimize the Hamming distance between the hash code of the adversarial example and the anchor code under the $ellinfty$ restriction on the perturbation.
arXiv Detail & Related papers (2020-04-15T08:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.