論文の概要: Decentralized, Communication- and Coordination-free Learning in
Structured Matching Markets
- arxiv url: http://arxiv.org/abs/2206.02344v1
- Date: Mon, 6 Jun 2022 04:08:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 14:37:10.371838
- Title: Decentralized, Communication- and Coordination-free Learning in
Structured Matching Markets
- Title(参考訳): 構造化マッチング市場における分散・コミュニケーション・協調フリー学習
- Authors: Chinmay Maheshwari and Eric Mazumdar and Shankar Sastry
- Abstract要約: 両面マッチング市場における競争環境におけるオンライン学習の問題について検討する。
本稿では、エージェントが安定したマッチングに到達できるように、分散化、通信、調整不要なアルゴリズムのクラスを提案する。
- 参考スコア(独自算出の注目度): 2.9833943723592764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of online learning in competitive settings in the
context of two-sided matching markets. In particular, one side of the market,
the agents, must learn about their preferences over the other side, the firms,
through repeated interaction while competing with other agents for successful
matches. We propose a class of decentralized, communication- and
coordination-free algorithms that agents can use to reach to their stable match
in structured matching markets. In contrast to prior works, the proposed
algorithms make decisions based solely on an agent's own history of play and
requires no foreknowledge of the firms' preferences. Our algorithms are
constructed by splitting up the statistical problem of learning one's
preferences, from noisy observations, from the problem of competing for firms.
We show that under realistic structural assumptions on the underlying
preferences of the agents and firms, the proposed algorithms incur a regret
which grows at most logarithmically in the time horizon. Our results show that,
in the case of matching markets, competition need not drastically affect the
performance of decentralized, communication and coordination free online
learning algorithms.
- Abstract(参考訳): 両面マッチング市場における競争環境におけるオンライン学習の問題について検討する。
特に、市場の片側、つまりエージェントは、試合を成功させるために他のエージェントと競争しながら繰り返し対話することで、相手の好みについて学ぶ必要がある。
本稿では,エージェントが構造的マッチング市場で安定したマッチングに到達できる,分散化,通信性,協調性のないアルゴリズムのクラスを提案する。
先行研究とは対照的に、提案されたアルゴリズムはエージェント自身のプレイ履歴のみに基づいて意思決定を行い、企業の好みを事前に知る必要はない。
当社のアルゴリズムは,企業と競争する問題から,騒音観測から人の嗜好を学習する統計的問題を分割して構成する。
エージェントや企業の基本的な嗜好に関する現実的な構造的仮定の下では、提案アルゴリズムは、時間軸に対数的に増大する後悔を引き起こす。
その結果,一致する市場の場合,競争は分散化,コミュニケーション,オンライン学習アルゴリズムのコーディネーションに多大な影響を与えないことが示された。
関連論文リスト
- Naive Algorithmic Collusion: When Do Bandit Learners Cooperate and When Do They Compete? [0.0]
アルゴリズムエージェントは、さまざまな競争上の決定設定で使用される。
エージェントが競合する状況で使用されるマルチアーム帯域幅機械学習アルゴリズムの動作について検討する。
これらの文脈自由な盗賊は、相手の選択や結果の知識がないまま、相変わらず共謀行動を学ぶことを示している。
論文 参考訳(メタデータ) (2024-11-25T16:58:07Z) - Putting Gale & Shapley to Work: Guaranteeing Stability Through Learning [14.448192914855674]
両面のマッチング市場は、市場の片側からの参加者が好みに応じて反対側からの参加者と一致しなければならない、一連の問題を記述している。
我々は安定解の構造を利用して、安定解を見つける可能性を改善するアルゴリズムを考案する。
論文 参考訳(メタデータ) (2024-10-06T06:47:53Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
本稿では,契約設計によるオンライン学習問題において,利害関係者の経済的利益を整合させる理論的枠組みを提案する。
計画問題に対して、遠目エージェントに対する最適契約を決定するための効率的な動的プログラミングアルゴリズムを設計する。
学習問題に対して,契約の堅牢な設計から探索と搾取のバランスに至るまでの課題を解き放つために,非回帰学習アルゴリズムの汎用設計を導入する。
論文 参考訳(メタデータ) (2024-07-01T16:53:00Z) - Decentralized Competing Bandits in Non-Stationary Matching Markets [46.13741000158631]
非定常(動的)環境下での分散化二面マッチング市場の枠組みを紹介する。
分散非定常競合帯域(textttDNCB)を用いた分散非同期学習アルゴリズムの提案と解析を行う。
我々はこの強調探索を特徴付け、texttDNCBのサブ線形(対数的)後悔を得る。
論文 参考訳(メタデータ) (2022-05-31T21:05:30Z) - Finite-Time Consensus Learning for Decentralized Optimization with
Nonlinear Gossiping [77.53019031244908]
本稿では,非線形ゴシップ(NGO)に基づく分散学習フレームワークを提案する。
コミュニケーション遅延とランダム化チャットが学習にどう影響するかを解析することで,実践的なバリエーションの導出が可能となる。
論文 参考訳(メタデータ) (2021-11-04T15:36:25Z) - Learning Equilibria in Matching Markets from Bandit Feedback [139.29934476625488]
不確実性の下で安定した市場成果を学習するためのフレームワークとアルゴリズムを開発する。
私たちの研究は、大規模なデータ駆動の市場において、いつ、どのように安定したマッチングが生じるかを明らかにするための第一歩を踏み出します。
論文 参考訳(メタデータ) (2021-08-19T17:59:28Z) - Multi-Stage Decentralized Matching Markets: Uncertain Preferences and
Strategic Behaviors [91.3755431537592]
本稿では、現実世界のマッチング市場で最適な戦略を学ぶためのフレームワークを開発する。
我々は,不確実性レベルが特徴の福祉対フェアネストレードオフが存在することを示す。
シングルステージマッチングと比較して、マルチステージマッチングで参加者がより良くなることを証明します。
論文 参考訳(メタデータ) (2021-02-13T19:25:52Z) - Learning Strategies in Decentralized Matching Markets under Uncertain
Preferences [91.3755431537592]
エージェントの選好が不明な場合,共有資源の不足の設定における意思決定の問題について検討する。
我々のアプローチは、再生されたカーネルヒルベルト空間における好みの表現に基づいている。
エージェントの期待した利益を最大化する最適な戦略を導出する。
論文 参考訳(メタデータ) (2020-10-29T03:08:22Z) - Decentralized Reinforcement Learning: Global Decision-Making via Local
Economic Transactions [80.49176924360499]
我々は、シーケンシャルな意思決定問題を解決するために、単純で専門的で自己関心のあるエージェントの社会を指示する枠組みを確立する。
我々は分散強化学習アルゴリズムのクラスを導出する。
我々は、より効率的な移動学習のための社会固有のモジュラー構造の潜在的な利点を実証する。
論文 参考訳(メタデータ) (2020-07-05T16:41:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。