Restructuring Graph for Higher Homophily via Adaptive Spectral Clustering
- URL: http://arxiv.org/abs/2206.02386v3
- Date: Mon, 29 Apr 2024 06:28:40 GMT
- Title: Restructuring Graph for Higher Homophily via Adaptive Spectral Clustering
- Authors: Shouheng Li, Dongwoo Kim, Qing Wang,
- Abstract summary: We show that a graph restructuring method can significantly boost the performance of six classical GNNs by an average of 25% on less-homophilic graphs.
The boosted performance is comparable to state-of-the-art methods.
- Score: 7.223313563198697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While a growing body of literature has been studying new Graph Neural Networks (GNNs) that work on both homophilic and heterophilic graphs, little has been done on adapting classical GNNs to less-homophilic graphs. Although the ability to handle less-homophilic graphs is restricted, classical GNNs still stand out in several nice properties such as efficiency, simplicity, and explainability. In this work, we propose a novel graph restructuring method that can be integrated into any type of GNNs, including classical GNNs, to leverage the benefits of existing GNNs while alleviating their limitations. Our contribution is threefold: a) learning the weight of pseudo-eigenvectors for an adaptive spectral clustering that aligns well with known node labels, b) proposing a new density-aware homophilic metric that is robust to label imbalance, and c) reconstructing the adjacency matrix based on the result of adaptive spectral clustering to maximize the homophilic scores. The experimental results show that our graph restructuring method can significantly boost the performance of six classical GNNs by an average of 25% on less-homophilic graphs. The boosted performance is comparable to state-of-the-art methods.
Related papers
- Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - Demystifying Structural Disparity in Graph Neural Networks: Can One Size
Fit All? [61.35457647107439]
Most real-world homophilic and heterophilic graphs are comprised of a mixture of nodes in both homophilic and heterophilic structural patterns.
We provide evidence that Graph Neural Networks(GNNs) on node classification typically perform admirably on homophilic nodes.
We then propose a rigorous, non-i.i.d PAC-Bayesian generalization bound for GNNs, revealing reasons for the performance disparity.
arXiv Detail & Related papers (2023-06-02T07:46:20Z) - GCNH: A Simple Method For Representation Learning On Heterophilous
Graphs [4.051099980410583]
Graph Neural Networks (GNNs) are well-suited for learning on homophilous graphs.
Recent works have proposed extensions to standard GNN architectures to improve performance on heterophilous graphs.
We propose GCN for Heterophily (GCNH), a simple yet effective GNN architecture applicable to both heterophilous and homophilous scenarios.
arXiv Detail & Related papers (2023-04-21T11:26:24Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Make Heterophily Graphs Better Fit GNN: A Graph Rewiring Approach [43.41163711340362]
We propose a method named Deep Heterophily Graph Rewiring (DHGR) to rewire graphs by adding homophilic edges and pruning heterophilic edges.
To the best of our knowledge, it is the first work studying graph rewiring for heterophily graphs.
arXiv Detail & Related papers (2022-09-17T06:55:21Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
We propose a new metric based on von Neumann entropy to re-examine the heterophily problem of GNNs.
We also propose a Conv-Agnostic GNN framework (CAGNNs) to enhance the performance of most GNNs on heterophily datasets.
arXiv Detail & Related papers (2022-03-19T14:26:43Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
We provide a comprehensive review of graph neural networks (GNNs) for heterophilic graphs.
Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models.
We discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs.
arXiv Detail & Related papers (2022-02-14T23:07:47Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
Graph neural networks (GNNs) have shown great prowess in learning representations suitable for numerous graph-based machine learning tasks.
GNNs are widely believed to work well due to the homophily assumption ("like attracts like"), and fail to generalize to heterophilous graphs where dissimilar nodes connect.
Recent works design new architectures to overcome such heterophily-related limitations, citing poor baseline performance and new architecture improvements on a few heterophilous graph benchmark datasets as evidence for this notion.
In our experiments, we empirically find that standard graph convolutional networks (GCNs) can actually achieve better performance than
arXiv Detail & Related papers (2021-06-11T02:44:00Z) - Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs [6.018995094882323]
Graph neural networks (GNNs) have been extensively studied for prediction tasks on graphs.
Most GNNs assume local homophily, i.e., strong similarities in localneighborhoods.
We propose a flexible GNN model, which is capable of handling any graphs without beingrestricted by their underlying homophily.
arXiv Detail & Related papers (2021-03-26T00:35:36Z) - Graph Neural Networks with Heterophily [40.23690407583509]
We propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily.
We show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN.
arXiv Detail & Related papers (2020-09-28T18:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.