Automated Circuit Sizing with Multi-objective Optimization based on
Differential Evolution and Bayesian Inference
- URL: http://arxiv.org/abs/2206.02391v1
- Date: Mon, 6 Jun 2022 06:48:45 GMT
- Title: Automated Circuit Sizing with Multi-objective Optimization based on
Differential Evolution and Bayesian Inference
- Authors: Catalin Visan, Octavian Pascu, Marius Stanescu, Elena-Diana Sandru,
Cristian Diaconu, Andi Buzo, Georg Pelz, Horia Cucu
- Abstract summary: We introduce a design optimization method based on Generalized Differential Evolution 3 (GDE3) and Gaussian Processes (GPs)
The proposed method is able to perform sizing for complex circuits with a large number of design variables and many conflicting objectives to be optimized.
We evaluate the introduced method on two voltage regulators showing different levels of complexity.
- Score: 1.1579778934294358
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the ever increasing complexity of specifications, manual sizing for
analog circuits recently became very challenging. Especially for innovative,
large-scale circuits designs, with tens of design variables, operating
conditions and conflicting objectives to be optimized, design engineers spend
many weeks, running time-consuming simulations, in their attempt at finding the
right configuration. Recent years brought machine learning and optimization
techniques to the field of analog circuits design, with evolutionary algorithms
and Bayesian models showing good results for circuit sizing. In this context,
we introduce a design optimization method based on Generalized Differential
Evolution 3 (GDE3) and Gaussian Processes (GPs). The proposed method is able to
perform sizing for complex circuits with a large number of design variables and
many conflicting objectives to be optimized. While state-of-the-art methods
reduce multi-objective problems to single-objective optimization and
potentially induce a prior bias, we search directly over the multi-objective
space using Pareto dominance and ensure that diverse solutions are provided to
the designers to choose from. To the best of our knowledge, the proposed method
is the first to specifically address the diversity of the solutions, while also
focusing on minimizing the number of simulations required to reach feasible
configurations. We evaluate the introduced method on two voltage regulators
showing different levels of complexity and we highlight that the proposed
innovative candidate selection method and survival policy leads to obtaining
feasible solutions, with a high degree of diversity, much faster than with GDE3
or Bayesian Optimization-based algorithms.
Related papers
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
Sequentially solving similar optimization problems under strict runtime constraints is essential for many applications.
We propose learning to predict emphmultiple diverse initial solutions given parameters that define the problem instance.
We find significant and consistent improvement with our method across all evaluation settings and demonstrate that it efficiently scales with the number of initial solutions required.
arXiv Detail & Related papers (2024-11-04T15:17:19Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Efficient Inverse Design Optimization through Multi-fidelity Simulations, Machine Learning, and Search Space Reduction Strategies [0.8646443773218541]
This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained by limited compute.
The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse design and the scalar field reconstruction problem.
Notably, this method is adaptable across any inverse design application, facilitating a synergy between a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of population-based optimization algorithms.
arXiv Detail & Related papers (2023-12-06T18:20:46Z) - Bayesian Quality-Diversity approaches for constrained optimization
problems with mixed continuous, discrete and categorical variables [0.3626013617212667]
A new Quality-Diversity methodology based on mixed variables is proposed in the context of limited simulation budget.
The proposed approach provides valuable trade-offs for decision-markers for complex system design.
arXiv Detail & Related papers (2023-09-11T14:29:47Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Optimal Design of Electric Machine with Efficient Handling of
Constraints and Surrogate Assistance [5.387300498478744]
This article proposes an optimization method incorporated into a popularly-used evolutionary multi-objective optimization algorithm - NSGA-II.
The proposed method exploits the inexpensiveness of geometric constraints to generate feasible designs by using a custom repair operator.
arXiv Detail & Related papers (2022-06-03T17:13:29Z) - Robust Topology Optimization Using Multi-Fidelity Variational Autoencoders [1.0124625066746595]
A robust topology optimization (RTO) problem identifies a design with the best average performance.
A neural network method is proposed that offers computational efficiency.
Numerical application of the method is shown on the robust design of L-bracket structure with single point load as well as multiple point loads.
arXiv Detail & Related papers (2021-07-19T20:40:51Z) - Speeding up Computational Morphogenesis with Online Neural Synthetic
Gradients [51.42959998304931]
A wide range of modern science and engineering applications are formulated as optimization problems with a system of partial differential equations (PDEs) as constraints.
These PDE-constrained optimization problems are typically solved in a standard discretize-then-optimize approach.
We propose a general framework to speed up PDE-constrained optimization using online neural synthetic gradients (ONSG) with a novel two-scale optimization scheme.
arXiv Detail & Related papers (2021-04-25T22:43:51Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Bayesian optimization of variable-size design space problems [0.0]
Two alternative Bayesian Optimization-based approaches are proposed in order to solve this type of optimization problems.
The first approach consists in a budget allocation strategy allowing to focus the computational budget on the most promising design sub-spaces.
The second approach, instead, is based on the definition of a kernel function allowing to compute the covariance between samples characterized by partially different sets of variables.
arXiv Detail & Related papers (2020-03-06T16:30:44Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.