Multi-objective Bayesian Optimization With Mixed-categorical Design Variables for Expensive-to-evaluate Aeronautical Applications
- URL: http://arxiv.org/abs/2504.09930v1
- Date: Mon, 14 Apr 2025 06:44:13 GMT
- Title: Multi-objective Bayesian Optimization With Mixed-categorical Design Variables for Expensive-to-evaluate Aeronautical Applications
- Authors: Nathalie Bartoli, Thierry Lefebvre, Rémi Lafage, Paul Saves, Youssef Diouane, Joseph Morlier, Jasper Bussemaker, Giuseppa Donelli, Joao Marcos Gomes de Mello, Massimo Mandorino, Pierluigi Della Vecchia,
- Abstract summary: This work aims at developing new methodologies to optimize computational costly complex systems.<n>The proposed surrogate-based method (often called Bayesian optimization) uses adaptive sampling to promote a trade-off between exploration and exploitation.<n>The effectiveness of proposed method was tested on practical aeronautical applications within the context of the European Project AGILE 4.0.
- Score: 0.47812237695718757
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work aims at developing new methodologies to optimize computational costly complex systems (e.g., aeronautical engineering systems). The proposed surrogate-based method (often called Bayesian optimization) uses adaptive sampling to promote a trade-off between exploration and exploitation. Our in-house implementation, called SEGOMOE, handles a high number of design variables (continuous, discrete or categorical) and nonlinearities by combining mixtures of experts for the objective and/or the constraints. Additionally, the method handles multi-objective optimization settings, as it allows the construction of accurate Pareto fronts with a minimal number of function evaluations. Different infill criteria have been implemented to handle multiple objectives with or without constraints. The effectiveness of the proposed method was tested on practical aeronautical applications within the context of the European Project AGILE 4.0 and demonstrated favorable results. A first example concerns a retrofitting problem where a comparison between two optimizers have been made. A second example introduces hierarchical variables to deal with architecture system in order to design an aircraft family. The third example increases drastically the number of categorical variables as it combines aircraft design, supply chain and manufacturing process. In this article, we show, on three different realistic problems, various aspects of our optimization codes thanks to the diversity of the treated aircraft problems.
Related papers
- Bayesian optimization for mixed variables using an adaptive dimension reduction process: applications to aircraft design [0.5420492913071214]
Multidisciplinary design optimization methods aim at adapting numerical optimization techniques to the design of engineering systems involving multiple disciplines.<n>Mixed continuous, integer and categorical variables might arise during the optimization process and practical applications involve a large number of design variables.
arXiv Detail & Related papers (2025-04-11T16:43:11Z) - Preference-Guided Diffusion for Multi-Objective Offline Optimization [64.08326521234228]
We propose a preference-guided diffusion model for offline multi-objective optimization.
Our guidance is a preference model trained to predict the probability that one design dominates another.
Our results highlight the effectiveness of classifier-guided diffusion models in generating diverse and high-quality solutions.
arXiv Detail & Related papers (2025-03-21T16:49:38Z) - Vehicle Suspension Recommendation System: Multi-Fidelity Neural Network-based Mechanism Design Optimization [4.038368925548051]
Vehicle suspensions are designed to improve driving performance and ride comfort, but different types are available depending on the environment.
Traditional design process is multi-step, gradually reducing the number of design candidates while performing costly analyses to meet target performance.
Recently, AI models have been used to reduce the computational cost of FEA.
arXiv Detail & Related papers (2024-10-03T23:54:03Z) - MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)
MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.
We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Bayesian Quality-Diversity approaches for constrained optimization
problems with mixed continuous, discrete and categorical variables [0.3626013617212667]
A new Quality-Diversity methodology based on mixed variables is proposed in the context of limited simulation budget.
The proposed approach provides valuable trade-offs for decision-markers for complex system design.
arXiv Detail & Related papers (2023-09-11T14:29:47Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Automated Circuit Sizing with Multi-objective Optimization based on
Differential Evolution and Bayesian Inference [1.1579778934294358]
We introduce a design optimization method based on Generalized Differential Evolution 3 (GDE3) and Gaussian Processes (GPs)
The proposed method is able to perform sizing for complex circuits with a large number of design variables and many conflicting objectives to be optimized.
We evaluate the introduced method on two voltage regulators showing different levels of complexity.
arXiv Detail & Related papers (2022-06-06T06:48:45Z) - Multi-objective robust optimization using adaptive surrogate models for
problems with mixed continuous-categorical parameters [0.0]
Robust design optimization is traditionally considered when uncertainties are mainly affecting the objective function.
The resulting nested optimization problem may be solved using a general-purpose solver, herein the non-dominated sorting genetic algorithm (NSGA-II)
The proposed approach consists of sequentially carrying out NSGA-II while using an adaptively built Kriging model to estimate the quantiles.
arXiv Detail & Related papers (2022-03-03T20:23:18Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - The multi-objective optimisation of breakwaters using evolutionary
approach [62.997667081978825]
In engineering practice, it is often necessary to increase the effectiveness of existing protective constructions for ports and coasts.
In the paper, the multi-objective evolutionary approach for the breakwaters optimisation is proposed.
arXiv Detail & Related papers (2020-04-06T21:48:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.