論文の概要: Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent
- arxiv url: http://arxiv.org/abs/2206.02617v7
- Date: Thu, 25 Jul 2024 06:33:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 20:16:16.381793
- Title: Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent
- Title(参考訳): 個人的個人的確率勾配変化に対する個人的プライバシ会計
- Authors: Da Yu, Gautam Kamath, Janardhan Kulkarni, Tie-Yan Liu, Jian Yin, Huishuai Zhang,
- Abstract要約: DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
- 参考スコア(独自算出の注目度): 69.14164921515949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentially private stochastic gradient descent (DP-SGD) is the workhorse algorithm for recent advances in private deep learning. It provides a single privacy guarantee to all datapoints in the dataset. We propose output-specific $(\varepsilon,\delta)$-DP to characterize privacy guarantees for individual examples when releasing models trained by DP-SGD. We also design an efficient algorithm to investigate individual privacy across a number of datasets. We find that most examples enjoy stronger privacy guarantees than the worst-case bound. We further discover that the training loss and the privacy parameter of an example are well-correlated. This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees. For example, on CIFAR-10, the average $\varepsilon$ of the class with the lowest test accuracy is 44.2\% higher than that of the class with the highest accuracy.
- Abstract(参考訳): 個人的確率勾配勾配勾配(DP-SGD)は,近年の私的深層学習におけるワークホースアルゴリズムである。
データセット内のすべてのデータポイントに対して、単一のプライバシ保証を提供する。
本稿では,DP-SGD でトレーニングしたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付けるために,出力特化 $(\varepsilon,\delta)$-DP を提案する。
また、複数のデータセットにわたる個人のプライバシーを調査する効率的なアルゴリズムを設計する。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
さらに、サンプルのトレーニング損失とプライバシパラメータがよく関連していることが分かりました。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
例えば、CIFAR-10では、テスト精度が最も低いクラスの平均$\varepsilon$は、最も高いクラスよりも44.2\%高い。
関連論文リスト
- Uncertainty quantification by block bootstrap for differentially private stochastic gradient descent [1.0742675209112622]
Gradient Descent (SGD) は機械学習において広く使われているツールである。
ブートストラップによるSGDの不確実性定量化(UQ)は、いくつかの著者によって解決されている。
本稿では,ローカルな差分プライバシーの下でSGDのブロックブートストラップを提案する。
論文 参考訳(メタデータ) (2024-05-21T07:47:21Z) - A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
パーソナライズされたプライバシパラメータで$(epsilon_i,delta_i)$-PLDP設定をシャッフルする方法を示す。
shuffled $(epsilon_i,delta_i)$-PLDP process approximately saves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
論文 参考訳(メタデータ) (2023-12-22T02:31:46Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
本研究では,離散データに対するデータ再構成攻撃について検討し,仮説テストの枠組みの下で解析する。
基礎となるプライベートデータが$M$のセットから値を取ると、ターゲットのプライバシパラメータ$epsilon$が$O(log M)$になる。
論文 参考訳(メタデータ) (2022-10-24T23:50:12Z) - Fine-Tuning with Differential Privacy Necessitates an Additional
Hyperparameter Search [38.83524780461911]
トレーニング済みニューラルネットワークで微調整されたレイヤを慎重に選択することで、プライバシと正確性の間に新たな最先端のトレードオフを確立することができることを示す。
ImageNetで事前トレーニングされたモデルに対して、CIFAR-100上で$(varepsilon, delta)= (2, 10-5)$に対して77.9%の精度を達成する。
論文 参考訳(メタデータ) (2022-10-05T11:32:49Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
しかし、スパースデータセットを共有するという点では、差分プライバシーがプライバシのゴールドスタンダードとして浮上している。
本研究では、スムーズな$k$匿名性(スムーズな$k$匿名性)と、スムーズな$k$匿名性(スムーズな$k$匿名性)を提供する単純な大規模アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-07-13T17:09:25Z) - Large Scale Transfer Learning for Differentially Private Image
Classification [51.10365553035979]
Differential Privacy(DP)は、個別のサンプルレベルのプライバシで機械学習モデルをトレーニングするための正式なフレームワークを提供する。
DP-SGDを用いたプライベートトレーニングは、個々のサンプル勾配にノイズを注入することで漏れを防ぐ。
この結果は非常に魅力的であるが,DP-SGDを用いた大規模モデルのトレーニングの計算コストは,非プライベートトレーニングよりもかなり高い。
論文 参考訳(メタデータ) (2022-05-06T01:22:20Z) - Quantifying identifiability to choose and audit $\epsilon$ in
differentially private deep learning [15.294433619347082]
機械学習で差分プライバシーを使用するには、データサイエンティストがプライバシパラメータを$(epsilon,delta)$を選択する必要がある。
私たちは$(epsilon,delta)$を、トレーニングデータセット内のレコードの存在に関する差分プライバシーによって想定される相手のベイジアン後方信念にバインドに変換します。
我々は、データサイエンティストがモデルのトレーニングを監査し、経験的識別可能性スコアと経験的$(epsilon,delta)$を計算することを可能にするこの差分プライバシーの敵対の実装を策定します。
論文 参考訳(メタデータ) (2021-03-04T09:35:58Z) - Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for
Private Learning [74.73901662374921]
差分プライベートモデルは、モデルが多数のトレーニング可能なパラメータを含む場合、ユーティリティを劇的に劣化させる。
偏微分プライベート深層モデルの精度向上のためのアルゴリズムemphGradient Embedding Perturbation (GEP)を提案する。
論文 参考訳(メタデータ) (2021-02-25T04:29:58Z) - Learning with User-Level Privacy [61.62978104304273]
ユーザレベルの差分プライバシー制約下での学習課題を,アルゴリズムを用いて解析する。
個々のサンプルのプライバシーのみを保証するのではなく、ユーザレベルのdpはユーザの貢献全体を保護します。
プライバシコストが$tau$に比例した$K$適応的に選択されたクエリのシーケンスにプライベートに答えるアルゴリズムを導き出し、私たちが検討する学習タスクを解決するためにそれを適用します。
論文 参考訳(メタデータ) (2021-02-23T18:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。