Learning with Capsules: A Survey
- URL: http://arxiv.org/abs/2206.02664v1
- Date: Mon, 6 Jun 2022 15:05:36 GMT
- Title: Learning with Capsules: A Survey
- Authors: Fabio De Sousa Ribeiro, Kevin Duarte, Miles Everett, Georgios
Leontidis, Mubarak Shah
- Abstract summary: Capsule networks were proposed as an alternative approach to Convolutional Neural Networks (CNNs) for learning object-centric representations.
Unlike CNNs, capsule networks are designed to explicitly model part-whole hierarchical relationships.
- Score: 73.31150426300198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Capsule networks were proposed as an alternative approach to Convolutional
Neural Networks (CNNs) for learning object-centric representations, which can
be leveraged for improved generalization and sample complexity. Unlike CNNs,
capsule networks are designed to explicitly model part-whole hierarchical
relationships by using groups of neurons to encode visual entities, and learn
the relationships between those entities. Promising early results achieved by
capsule networks have motivated the deep learning community to continue trying
to improve their performance and scalability across several application areas.
However, a major hurdle for capsule network research has been the lack of a
reliable point of reference for understanding their foundational ideas and
motivations. The aim of this survey is to provide a comprehensive overview of
the capsule network research landscape, which will serve as a valuable resource
for the community going forward. To that end, we start with an introduction to
the fundamental concepts and motivations behind capsule networks, such as
equivariant inference in computer vision. We then cover the technical advances
in the capsule routing mechanisms and the various formulations of capsule
networks, e.g. generative and geometric. Additionally, we provide a detailed
explanation of how capsule networks relate to the popular attention mechanism
in Transformers, and highlight non-trivial conceptual similarities between them
in the context of representation learning. Afterwards, we explore the extensive
applications of capsule networks in computer vision, video and motion, graph
representation learning, natural language processing, medical imaging and many
others. To conclude, we provide an in-depth discussion regarding the main
hurdles in capsule network research, and highlight promising research
directions for future work.
Related papers
- Hierarchical Object-Centric Learning with Capsule Networks [0.0]
Capsule networks (CapsNets) were introduced to address convolutional neural networks limitations.
This thesis investigates the intriguing aspects of CapsNets and focuses on three key questions to unlock their full potential.
arXiv Detail & Related papers (2024-05-30T09:10:33Z) - Less Data, More Knowledge: Building Next Generation Semantic
Communication Networks [180.82142885410238]
We present the first rigorous vision of a scalable end-to-end semantic communication network.
We first discuss how the design of semantic communication networks requires a move from data-driven networks towards knowledge-driven ones.
By using semantic representation and languages, we show that the traditional transmitter and receiver now become a teacher and apprentice.
arXiv Detail & Related papers (2022-11-25T19:03:25Z) - Neural Network based Successor Representations of Space and Language [6.748976209131109]
We present a neural network based approach to learn multi-scale successor representations of structured knowledge.
In all scenarios, the neural network correctly learns and approximates the underlying structure by building successor representations.
We conclude that cognitive maps and neural network-based successor representations of structured knowledge provide a promising way to overcome some of the short comings of deep learning towards artificial general intelligence.
arXiv Detail & Related papers (2022-02-22T21:52:46Z) - Routing with Self-Attention for Multimodal Capsule Networks [108.85007719132618]
We present a new multimodal capsule network that allows us to leverage the strength of capsules in the context of a multimodal learning framework.
To adapt the capsules to large-scale input data, we propose a novel routing by self-attention mechanism that selects relevant capsules.
This allows not only for robust training with noisy video data, but also to scale up the size of the capsule network compared to traditional routing methods.
arXiv Detail & Related papers (2021-12-01T19:01:26Z) - Network representation learning systematic review: ancestors and current
development state [1.0312968200748116]
We present a systematic survey of network representation learning, known as network embedding, from birth to the current development state.
We provide also formal definitions of basic concepts required to understand network representation learning.
Most commonly used downstream tasks to evaluate embeddings, their evaluation metrics and popular datasets are highlighted.
arXiv Detail & Related papers (2021-09-14T14:44:44Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - Deformable Capsules for Object Detection [3.702343116848637]
We introduce a new family of capsule networks, deformable capsules (textitDeformCaps), to address a very important problem in computer vision: object detection.
We demonstrate that the proposed methods efficiently scale up to create the first-ever capsule network for object detection in the literature.
arXiv Detail & Related papers (2021-04-11T15:36:30Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Subspace Capsule Network [85.69796543499021]
SubSpace Capsule Network (SCN) exploits the idea of capsule networks to model possible variations in the appearance or implicitly defined properties of an entity.
SCN can be applied to both discriminative and generative models without incurring computational overhead compared to CNN during test time.
arXiv Detail & Related papers (2020-02-07T17:51:56Z) - Examining the Benefits of Capsule Neural Networks [9.658250977094562]
Capsule networks are a newly developed class of neural networks that potentially address some of the deficiencies with traditional convolutional neural networks.
By replacing the standard scalar activations with vectors, capsule networks aim to be the next great development for computer vision applications.
arXiv Detail & Related papers (2020-01-29T17:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.