Plagiarism deterrence for introductory programming
- URL: http://arxiv.org/abs/2206.02848v1
- Date: Mon, 6 Jun 2022 18:47:25 GMT
- Title: Plagiarism deterrence for introductory programming
- Authors: Simon J. Cohen, Michael J. Martin, Chance A. Shipley, Abhishek Kumar,
Andrew R. Cohen
- Abstract summary: A class-wide statistical characterization can be clearly shared with students via an intuitive new p-value.
A pairwise, compression-based similarity detection algorithm captures relationships between assignments more accurately.
An unbiased scoring system aids students and the instructor in understanding true independence of effort.
- Score: 11.612194979331179
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Plagiarism in introductory programming courses is an enormous challenge for
both students and institutions. For students, relying on the work of others too
early in their academic development can make it impossible to acquire necessary
skills for independent success in the future. For institutions, widespread
student cheating can dilute the quality of the educational experience being
offered. Currently available solutions consider only pairwise comparisons
between student submissions and focus on punitive deterrence. Our approach
instead relies on a class-wide statistical characterization that can be clearly
and securely shared with students via an intuitive new p-value representing
independence of student effort. A pairwise, compression-based similarity
detection algorithm captures relationships between assignments more accurately.
An automated deterrence system is used to warn students that their behavior is
being closely monitored. High-confidence instances are made directly available
for instructor review using our open-source toolkit. An unbiased scoring system
aids students and the instructor in understanding true independence of effort.
Preliminary results indicate that the system can provide meaningful
measurements of independence from week one, improving the efficacy of technical
education.
Related papers
- Plagiarism and AI Assistance Misuse in Web Programming: Unfair Benefits
and Characteristics [0.0]
Plagiarized submissions are similar to the independent ones except in trivial aspects such as color and identifier names.
Students believe AI assistance could be useful given proper acknowledgment of the use, although they are not convinced with readability and correctness of the solutions.
arXiv Detail & Related papers (2023-10-31T00:51:14Z) - Self-Supervised Multi-Object Tracking For Autonomous Driving From
Consistency Across Timescales [53.55369862746357]
Self-supervised multi-object trackers have tremendous potential as they enable learning from raw domain-specific data.
However, their re-identification accuracy still falls short compared to their supervised counterparts.
We propose a training objective that enables self-supervised learning of re-identification features from multiple sequential frames.
arXiv Detail & Related papers (2023-04-25T20:47:29Z) - Reinforcement Learning Tutor Better Supported Lower Performers in a Math
Task [32.6507926764587]
Reinforcement learning could be a key tool to reduce the development cost and improve the effectiveness of intelligent tutoring software.
We show that deep reinforcement learning can be used to provide adaptive pedagogical support to students learning about the concept of volume.
arXiv Detail & Related papers (2023-04-11T02:11:24Z) - Personalized Student Attribute Inference [0.0]
This work is to create a system able to automatically detect students in difficulty, for instance predicting if they are likely to fail a course.
We compare a naive approach widely used in the literature, which uses attributes available in the data set (like the grades) with a personalized approach we called Personalized Student Attribute Inference (IPSA)
arXiv Detail & Related papers (2022-12-26T23:00:28Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - A Machine Learning system to monitor student progress in educational
institutes [0.0]
We propose a data driven approach that makes use of Machine Learning techniques to generate a classifier called credit score.
The proposal to use credit score as progress indicator is well suited to be used in a Learning Management System.
arXiv Detail & Related papers (2022-11-02T08:24:08Z) - A Low Rank Promoting Prior for Unsupervised Contrastive Learning [108.91406719395417]
We construct a novel probabilistic graphical model that effectively incorporates the low rank promoting prior into the framework of contrastive learning.
Our hypothesis explicitly requires that all the samples belonging to the same instance class lie on the same subspace with small dimension.
Empirical evidences show that the proposed algorithm clearly surpasses the state-of-the-art approaches on multiple benchmarks.
arXiv Detail & Related papers (2021-08-05T15:58:25Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - The Wits Intelligent Teaching System: Detecting Student Engagement
During Lectures Using Convolutional Neural Networks [0.30458514384586394]
The Wits Intelligent Teaching System (WITS) aims to assist lecturers with real-time feedback regarding student affect.
A CNN based on AlexNet is successfully trained and which significantly outperforms a Support Vector Machine approach.
arXiv Detail & Related papers (2021-05-28T12:59:37Z) - Can Semantic Labels Assist Self-Supervised Visual Representation
Learning? [194.1681088693248]
We present a new algorithm named Supervised Contrastive Adjustment in Neighborhood (SCAN)
In a series of downstream tasks, SCAN achieves superior performance compared to previous fully-supervised and self-supervised methods.
Our study reveals that semantic labels are useful in assisting self-supervised methods, opening a new direction for the community.
arXiv Detail & Related papers (2020-11-17T13:25:00Z) - Combining Self-Training and Self-Supervised Learning for Unsupervised
Disfluency Detection [80.68446022994492]
In this work, we explore the unsupervised learning paradigm which can potentially work with unlabeled text corpora.
Our model builds upon the recent work on Noisy Student Training, a semi-supervised learning approach that extends the idea of self-training.
arXiv Detail & Related papers (2020-10-29T05:29:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.