The Wits Intelligent Teaching System: Detecting Student Engagement
During Lectures Using Convolutional Neural Networks
- URL: http://arxiv.org/abs/2105.13794v1
- Date: Fri, 28 May 2021 12:59:37 GMT
- Title: The Wits Intelligent Teaching System: Detecting Student Engagement
During Lectures Using Convolutional Neural Networks
- Authors: Richard Klein and Turgay Celik
- Abstract summary: The Wits Intelligent Teaching System (WITS) aims to assist lecturers with real-time feedback regarding student affect.
A CNN based on AlexNet is successfully trained and which significantly outperforms a Support Vector Machine approach.
- Score: 0.30458514384586394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To perform contingent teaching and be responsive to students' needs during
class, lecturers must be able to quickly assess the state of their audience.
While effective teachers are able to gauge easily the affective state of the
students, as class sizes grow this becomes increasingly difficult and less
precise. The Wits Intelligent Teaching System (WITS) aims to assist lecturers
with real-time feedback regarding student affect. The focus is primarily on
recognising engagement or lack thereof. Student engagement is labelled based on
behaviour and postures that are common to classroom settings. These proxies are
then used in an observational checklist to construct a dataset of engagement
upon which a CNN based on AlexNet is successfully trained and which
significantly outperforms a Support Vector Machine approach. The deep learning
approach provides satisfactory results on a challenging, real-world dataset
with significant occlusion, lighting and resolution constraints.
Related papers
- Representational Alignment Supports Effective Machine Teaching [81.19197059407121]
We integrate insights from machine teaching and pragmatic communication with the literature on representational alignment.
We design a supervised learning environment that disentangles representational alignment from teacher accuracy.
arXiv Detail & Related papers (2024-06-06T17:48:24Z) - Revealing Networks: Understanding Effective Teacher Practices in
AI-Supported Classrooms using Transmodal Ordered Network Analysis [0.9187505256430948]
The present study uses transmodal ordered network analysis to understand effective teacher practices in relationship to traditional metrics of in-system learning in a mathematics classroom working with AI tutors.
Comparing teacher practices by student learning rates, we find that students with low learning rates exhibited more hint use after monitoring.
Students with low learning rates showed learning behavior similar to their high learning rate peers, achieving repeated correct attempts in the tutor.
arXiv Detail & Related papers (2023-12-17T21:50:02Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - A Machine Learning system to monitor student progress in educational
institutes [0.0]
We propose a data driven approach that makes use of Machine Learning techniques to generate a classifier called credit score.
The proposal to use credit score as progress indicator is well suited to be used in a Learning Management System.
arXiv Detail & Related papers (2022-11-02T08:24:08Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
Interpretable Knowledge Tracing (IKT) is a simple model that relies on three meaningful latent features.
IKT's prediction of future student performance is made using a Tree-Augmented Naive Bayes (TAN)
IKT has great potential for providing adaptive and personalized instructions with causal reasoning in real-world educational systems.
arXiv Detail & Related papers (2021-12-15T19:05:48Z) - Towards Explainable Student Group Collaboration Assessment Models Using
Temporal Representations of Individual Student Roles [12.945344702592557]
We propose using simple temporal-CNN deep-learning models to assess student group collaboration.
We check the applicability of dynamically changing feature representations for student group collaboration assessment.
We also use Grad-CAM visualizations to better understand and interpret the important temporal indices that led to the deep-learning model's decision.
arXiv Detail & Related papers (2021-06-17T16:00:08Z) - Point Adversarial Self Mining: A Simple Method for Facial Expression
Recognition [79.75964372862279]
We propose Point Adversarial Self Mining (PASM) to improve the recognition accuracy in facial expression recognition.
PASM uses a point adversarial attack method and a trained teacher network to locate the most informative position related to the target task.
The adaptive learning materials generation and teacher/student update can be conducted more than one time, improving the network capability iteratively.
arXiv Detail & Related papers (2020-08-26T06:39:24Z) - Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network [56.62345811216183]
We propose a novel approach using Graph Neural Networks (GNNs) to achieve better student performance prediction in interactive online question pools.
Specifically, we model the relationship between students and questions using student interactions to construct the student-interaction-question network.
We evaluate the effectiveness of our approach on a real-world dataset consisting of 104,113 mouse trajectories generated in the problem-solving process of over 4000 students on 1631 questions.
arXiv Detail & Related papers (2020-08-04T14:55:32Z) - Interactive Knowledge Distillation [79.12866404907506]
We propose an InterActive Knowledge Distillation scheme to leverage the interactive teaching strategy for efficient knowledge distillation.
In the distillation process, the interaction between teacher and student networks is implemented by a swapping-in operation.
Experiments with typical settings of teacher-student networks demonstrate that the student networks trained by our IAKD achieve better performance than those trained by conventional knowledge distillation methods.
arXiv Detail & Related papers (2020-07-03T03:22:04Z) - Student-Teacher Curriculum Learning via Reinforcement Learning:
Predicting Hospital Inpatient Admission Location [4.359338565775979]
In this work we propose a student-teacher network via reinforcement learning to deal with this specific problem.
A representation of the weights of the student network is treated as the state and is fed as an input to the teacher network.
The teacher network's action is to select the most appropriate batch of data to train the student network on from a training set sorted according to entropy.
arXiv Detail & Related papers (2020-07-01T15:00:43Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
We build an end-to-end neural framework that automatically detects questions from teachers' audio recordings.
By incorporating multi-task learning techniques, we are able to strengthen the understanding of semantic relations among different types of questions.
arXiv Detail & Related papers (2020-05-16T02:17:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.