論文の概要: Discriminative Models Can Still Outperform Generative Models in Aspect
Based Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2206.02892v1
- Date: Mon, 6 Jun 2022 20:32:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-08 14:21:43.296219
- Title: Discriminative Models Can Still Outperform Generative Models in Aspect
Based Sentiment Analysis
- Title(参考訳): 識別モデルによる知覚分析における生成モデルの性能向上
- Authors: Dhruv Mullick, Alona Fyshe, Bilal Ghanem
- Abstract要約: 生成モデルはテキストから直接アスペクトと極性を生成するために使われてきた。
識別モデルは、まずテキストからアスペクトを選択し、次にアスペクトの極性を分類する。
我々のより徹底的な評価は、以前の研究とは対照的に、差別的モデルは、ほとんど全ての設定で生成モデルよりも優れていることを示している。
- 参考スコア(独自算出の注目度): 4.2605449879340656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aspect-based Sentiment Analysis (ABSA) helps to explain customers' opinions
towards products and services. In the past, ABSA models were discriminative,
but more recently generative models have been used to generate aspects and
polarities directly from text. In contrast, discriminative models commonly
first select aspects from the text, and then classify the aspect's polarity.
Previous results showed that generative models outperform discriminative models
on several English ABSA datasets. Here, we evaluate and contrast two
state-of-the-art discriminative and generative models in several settings:
cross-lingual, cross-domain, and cross-lingual and domain, to understand
generalizability in settings other than English mono-lingual in-domain. Our
more thorough evaluation shows that, contrary to previous studies,
discriminative models can still outperform generative models in almost all
settings.
- Abstract(参考訳): アスペクトベースの知覚分析(ABSA)は、製品やサービスに対する顧客の意見を説明するのに役立つ。
過去にはABSAモデルは差別的だったが、近年ではテキストから直接アスペクトや極性を生成するために生成モデルが使われている。
対照的に、識別モデルはまずテキストからアスペクトを選択し、次にアスペクトの極性を分類する。
以前の結果から、生成モデルはいくつかの英語のABSAデータセットにおいて差別モデルよりも優れていた。
本稿では,言語間,言語間,言語間および言語間およびドメインという,英語のモノリンガル内ドメイン以外の設定における一般化可能性を理解するために,2つの最先端の判別モデルと生成モデルを評価し,対比する。
我々のより徹底的な評価は、以前の研究とは対照的に、差別的モデルは、ほとんど全ての設定で生成モデルよりも優れていることを示している。
関連論文リスト
- DPP-Based Adversarial Prompt Searching for Lanugage Models [56.73828162194457]
Auto-Regressive Selective Replacement Ascent (ASRA)は、決定点プロセス(DPP)と品質と類似性の両方に基づいてプロンプトを選択する離散最適化アルゴリズムである。
6種類の事前学習言語モデルに対する実験結果から,ASRAによる有害成分の抽出の有効性が示された。
論文 参考訳(メタデータ) (2024-03-01T05:28:06Z) - Evaluating Large Language Models through Gender and Racial Stereotypes [0.0]
質比較研究を行い、性別と人種の2種類の偏見を前提として、言語モデルを評価する枠組みを確立する。
より古いモデルに比べて、新しいモデルでは男女の偏見が大幅に減少したが、人種の偏見は依然として存在する。
論文 参考訳(メタデータ) (2023-11-24T18:41:16Z) - Towards Auditing Large Language Models: Improving Text-based Stereotype
Detection [5.3634450268516565]
i) ジェンダー、人種、職業、宗教のステレオタイプテキストの52,751件を含むマルチグラインステレオタイプデータセットを紹介する。
そこで本研究では,新しいデータセットでトレーニングしたモデルについて,厳密に検証する実験を行った。
実験によると、マルチクラスの設定でモデルをトレーニングすることは、すべてのバイナリの1つよりも優れている。
論文 参考訳(メタデータ) (2023-11-23T17:47:14Z) - Social Bias Probing: Fairness Benchmarking for Language Models [38.180696489079985]
本稿では,社会的偏見を考慮した言語モデル構築のための新しい枠組みを提案する。
既存のフェアネスコレクションの制限に対処するために設計された大規模なベンチマークであるSoFaをキュレートする。
我々は、言語モデル内のバイアスが認識されるよりもニュアンスが高いことを示し、これまで認識されていたよりもより広く符号化されたバイアスの範囲を示している。
論文 参考訳(メタデータ) (2023-11-15T16:35:59Z) - Evaluating Large Language Models on Controlled Generation Tasks [92.64781370921486]
本稿では,異なる粒度を持つ文計画ベンチマークを含む,様々なベンチマークを広範囲に分析する。
大規模言語モデルと最先端の微調整された小型モデルを比較した後、大規模言語モデルが後方に落ちたり、比較されたり、より小型モデルの能力を超えたりしたスペクトルを示す。
論文 参考訳(メタデータ) (2023-10-23T03:48:24Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - Diversity vs. Recognizability: Human-like generalization in one-shot
generative models [5.964436882344729]
サンプル認識可能性と多様性の2つの軸に沿った1ショット生成モデルを評価するための新しい枠組みを提案する。
まず、GANのようなモデルとVAEのようなモデルが多様性認識性空間の反対側にあることを示す。
対照的に、非絡み合いは、認識可能性の最大化に使用できるパラボラ曲線に沿ってモデルを輸送する。
論文 参考訳(メタデータ) (2022-05-20T13:17:08Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
我々は、アスペクト項、カテゴリを抽出し、対応する極性を予測するアスペクトベースの感情分析に焦点を当てる。
本稿では,一方向の注意を伴う生成言語モデルを用いて,抽出タスクと予測タスクをシーケンス生成タスクに再構成することを提案する。
提案手法は,従来の最先端(BERTをベースとした)の性能を,数ショットとフルショットの設定において,大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-04-11T18:31:53Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
我々は、静的DSMによって生成されたり、BERTによって生成された文脈化されたベクトルを平均化して得られるような、型分布ベクトルの包括的評価を行う。
その結果、予測ベースモデルの優越性は現実よりも明らかであり、ユビキタスではないことが明らかとなった。
我々は認知神経科学からRepresentational similarity Analysis(RSA)の方法論を借りて、分布モデルによって生成された意味空間を検査する。
論文 参考訳(メタデータ) (2021-05-20T15:18:06Z) - Comparative Study of Language Models on Cross-Domain Data with Model
Agnostic Explainability [0.0]
この研究は、最先端の言語モデルであるBERT、ELECTRAとその派生品であるRoBERTa、ALBERT、DistilBERTを比較した。
実験結果は、2013年の格付けタスクとフィナンシャル・フレーズバンクの感情検出タスクの69%、そして88.2%の精度で、新たな最先端の「評価タスク」を確立した。
論文 参考訳(メタデータ) (2020-09-09T04:31:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。