8-bit Numerical Formats for Deep Neural Networks
- URL: http://arxiv.org/abs/2206.02915v1
- Date: Mon, 6 Jun 2022 21:31:32 GMT
- Title: 8-bit Numerical Formats for Deep Neural Networks
- Authors: Badreddine Noune, Philip Jones, Daniel Justus, Dominic Masters, and
Carlo Luschi
- Abstract summary: We present an in-depth study on the use of 8-bit floating-point number formats for activations, weights, and gradients for both training and inference.
Experiments demonstrate that a suitable choice of these low-precision formats enables faster training and reduced power consumption without any degradation in accuracy for a range of deep learning models for image classification and language processing.
- Score: 1.304892050913381
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Given the current trend of increasing size and complexity of machine learning
architectures, it has become of critical importance to identify new approaches
to improve the computational efficiency of model training. In this context, we
address the advantages of floating-point over fixed-point representation, and
present an in-depth study on the use of 8-bit floating-point number formats for
activations, weights, and gradients for both training and inference. We explore
the effect of different bit-widths for exponents and significands and different
exponent biases. The experimental results demonstrate that a suitable choice of
these low-precision formats enables faster training and reduced power
consumption without any degradation in accuracy for a range of deep learning
models for image classification and language processing.
Related papers
- WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
Deep image registration has demonstrated exceptional accuracy and fast inference.
Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner.
We introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales.
arXiv Detail & Related papers (2024-07-18T11:51:01Z) - Training and inference of large language models using 8-bit floating
point [3.689110902209004]
This paper presents a methodology to select the scalings for FP8 linear layers, based on dynamically updating per-tensor scales for the weights, gradients and activations.
We apply this methodology to train and validate large language models of the type of GPT and Llama 2 using FP8, for model sizes ranging from 111M to 70B.
arXiv Detail & Related papers (2023-09-29T13:24:33Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
We argue that zero-shot structured pruning of pretrained models allows them to increase compute efficiency with minimal reduction in performance.
Our results show that pruning convolutional filters of pretrained models can lead to more than 20% performance improvement in low computational regimes.
arXiv Detail & Related papers (2023-04-25T21:49:09Z) - FP8 Quantization: The Power of the Exponent [19.179749424362686]
This paper investigates the benefit of the floating point format for neural network inference.
We detail the choices that can be made for the FP8 format, including the important choice of the number of bits for the mantissa and exponent.
We show how these findings translate to real networks, provide an efficient implementation for FP8 simulation, and a new algorithm.
arXiv Detail & Related papers (2022-08-19T09:03:00Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - PositNN: Training Deep Neural Networks with Mixed Low-Precision Posit [5.534626267734822]
The presented research aims to evaluate the feasibility to train deep convolutional neural networks using posits.
A software framework was developed to use simulated posits and quires in end-to-end training and inference.
Results suggest that 8-bit posits can substitute 32-bit floats during training with no negative impact on the resulting loss and accuracy.
arXiv Detail & Related papers (2021-04-30T19:30:37Z) - All-You-Can-Fit 8-Bit Flexible Floating-Point Format for Accurate and
Memory-Efficient Inference of Deep Neural Networks [2.294014185517203]
This paper introduces an extremely flexible 8-bit floating-point (FFP8) format.
It achieves an extremely low accuracy loss of $0.1%sim 0.3%$ for several representative image classification models.
It is easy to turn a classical floating-point processing unit into an FFP8-compliant one, and the extra hardware cost is minor.
arXiv Detail & Related papers (2021-04-15T09:37:23Z) - A Survey of Quantization Methods for Efficient Neural Network Inference [75.55159744950859]
quantization is the problem of distributing continuous real-valued numbers over a fixed discrete set of numbers to minimize the number of bits required.
It has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas.
Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x.
arXiv Detail & Related papers (2021-03-25T06:57:11Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
Convolutional Neural Networks (CNNs) do not have a predictable recognition behavior with respect to the input resolution change.
We employ meta learners to generate convolutional weights of main networks for various input scales.
We further utilize knowledge distillation on the fly over model predictions based on different input resolutions.
arXiv Detail & Related papers (2020-07-13T04:27:25Z) - Shifted and Squeezed 8-bit Floating Point format for Low-Precision
Training of Deep Neural Networks [13.929168096016957]
We introduce a novel methodology for training deep neural networks using 8-bit floating point (FP8) numbers.
Reduced bit precision allows for a larger effective memory and increased computational speed.
We show that, unlike previous 8-bit precision training methods, the proposed method works out-of-the-box for representative models.
arXiv Detail & Related papers (2020-01-16T06:38:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.