Robust Time Series Dissimilarity Measure for Outlier Detection and
Periodicity Detection
- URL: http://arxiv.org/abs/2206.02956v1
- Date: Tue, 7 Jun 2022 00:49:16 GMT
- Title: Robust Time Series Dissimilarity Measure for Outlier Detection and
Periodicity Detection
- Authors: Xiaomin Song, Qingsong Wen, Yan Li, Liang Sun
- Abstract summary: We propose a novel time series dissimilarity measure named RobustDTW to reduce the effects of noises and outliers.
Specifically, the RobustDTW estimates the trend and optimize the time warp in an alternating manner by utilizing our designed temporal graph trend filtering.
Experiments on real-world datasets demonstrate the superior performance of RobustDTW compared to DTW variants in both outlier time series detection and periodicity detection.
- Score: 16.223509730658513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic time warping (DTW) is an effective dissimilarity measure in many time
series applications. Despite its popularity, it is prone to noises and
outliers, which leads to singularity problem and bias in the measurement. The
time complexity of DTW is quadratic to the length of time series, making it
inapplicable in real-time applications. In this paper, we propose a novel time
series dissimilarity measure named RobustDTW to reduce the effects of noises
and outliers. Specifically, the RobustDTW estimates the trend and optimizes the
time warp in an alternating manner by utilizing our designed temporal graph
trend filtering. To improve efficiency, we propose a multi-level framework that
estimates the trend and the warp function at a lower resolution, and then
repeatedly refines them at a higher resolution. Based on the proposed
RobustDTW, we further extend it to periodicity detection and outlier time
series detection. Experiments on real-world datasets demonstrate the superior
performance of RobustDTW compared to DTW variants in both outlier time series
detection and periodicity detection.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Expert enhanced dynamic time warping based anomaly detection [1.3812010983144802]
We propose a novel anomaly detection method named Expert enhanced dynamic time warping anomaly detection (E-DTWA)
It is based on DTW with additional enhancements involving human-in-the-loop concept.
The main benefits of our approach comprise efficient detection, flexible retraining based on strong consideration of the expert's detection feedback.
arXiv Detail & Related papers (2023-10-02T04:54:04Z) - Deep Attentive Time Warping [22.411355064531143]
We propose a neural network model for task-adaptive time warping.
We use the attention model, called the bipartite attention model, to develop an explicit time warping mechanism.
Unlike other learnable models using DTW for warping, our model predicts all local correspondences between two time series.
arXiv Detail & Related papers (2023-09-13T04:49:49Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - RePAD2: Real-Time, Lightweight, and Adaptive Anomaly Detection for
Open-Ended Time Series [0.0]
An open-ended time series refers to a series of data points indexed in time order without an end.
Several real-time time series anomaly detection approaches have been introduced.
They might exhaust system resources when they are applied to open-ended time series for a long time.
We propose RePAD2, a lightweight real-time anomaly detection approach for open-ended time series.
arXiv Detail & Related papers (2023-03-01T11:00:20Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis [80.56913334060404]
Time series analysis is of immense importance in applications, such as weather forecasting, anomaly detection, and action recognition.
Previous methods attempt to accomplish this directly from the 1D time series.
We ravel out the complex temporal variations into the multiple intraperiod- and interperiod-variations.
arXiv Detail & Related papers (2022-10-05T12:19:51Z) - Triformer: Triangular, Variable-Specific Attentions for Long Sequence
Multivariate Time Series Forecasting--Full Version [50.43914511877446]
We propose a triangular, variable-specific attention to ensure high efficiency and accuracy.
We show that Triformer outperforms state-of-the-art methods w.r.t. both accuracy and efficiency.
arXiv Detail & Related papers (2022-04-28T20:41:49Z) - A Case-Study on the Impact of Dynamic Time Warping in Time Series
Regression [2.639737913330821]
We show that Dynamic Time Warping (DTW) is effective in improving accuracy on a regression task when only a single wavelength is considered.
When combined with k-Nearest Neighbour, DTW has the added advantage that it can reveal similarities and differences between samples at the level of the time-series.
However, in the problem, we consider here data is available across a spectrum of wavelengths.
arXiv Detail & Related papers (2020-10-11T15:21:21Z) - Finding Action Tubes with a Sparse-to-Dense Framework [62.60742627484788]
We propose a framework that generates action tube proposals from video streams with a single forward pass in a sparse-to-dense manner.
We evaluate the efficacy of our model on the UCF101-24, JHMDB-21 and UCFSports benchmark datasets.
arXiv Detail & Related papers (2020-08-30T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.