Fairness and Explainability in Automatic Decision-Making Systems. A
challenge for computer science and law
- URL: http://arxiv.org/abs/2206.03226v1
- Date: Sat, 14 May 2022 01:08:47 GMT
- Title: Fairness and Explainability in Automatic Decision-Making Systems. A
challenge for computer science and law
- Authors: Thierry Kirat, Olivia Tambou, Virginie Do, Alexis Tsouki\`as
- Abstract summary: The paper offers a contribution to the interdisciplinary constructs of analyzing fairness issues in automatic algorithmic decisions.
Section 1 shows that technical choices in supervised learning have social implications that need to be considered.
Section 2 proposes a contextual approach to the issue of unintended group discrimination.
- Score: 3.656085108168043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper offers a contribution to the interdisciplinary constructs of
analyzing fairness issues in automatic algorithmic decisions. Section 1 shows
that technical choices in supervised learning have social implications that
need to be considered. Section 2 proposes a contextual approach to the issue of
unintended group discrimination, i.e. decision rules that are facially neutral
but generate disproportionate impacts across social groups (e.g., gender, race
or ethnicity). The contextualization will focus on the legal systems of the
United States on the one hand and Europe on the other. In particular,
legislation and case law tend to promote different standards of fairness on
both sides of the Atlantic. Section 3 is devoted to the explainability of
algorithmic decisions; it will confront and attempt to cross-reference legal
concepts (in European and French law) with technical concepts and will
highlight the plurality, even polysemy, of European and French legal texts
relating to the explicability of algorithmic decisions. The conclusion proposes
directions for further research.
Related papers
- Formalising Anti-Discrimination Law in Automated Decision Systems [1.560976479364936]
We study the legal challenges in automated decision-making by analysing conventional algorithmic fairness approaches.
By translating principles of anti-discrimination law into a decision-theoretic framework, we formalise discrimination.
We propose a new, legally informed approach to developing systems for automated decision-making.
arXiv Detail & Related papers (2024-06-29T10:59:21Z) - Implications of the AI Act for Non-Discrimination Law and Algorithmic Fairness [1.5029560229270191]
The topic of fairness in AI has sparked meaningful discussions in the past years.
From a legal perspective, many open questions remain.
The AI Act might present a tremendous step towards bridging these two approaches.
arXiv Detail & Related papers (2024-03-29T09:54:09Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
This report presents the takeaways of the inaugural Workshop on Generative AI and Law (GenLaw)
A cross-disciplinary group of practitioners and scholars from computer science and law convened to discuss the technical, doctrinal, and policy challenges presented by law for Generative AI.
arXiv Detail & Related papers (2023-11-11T04:13:37Z) - Algorithmic Unfairness through the Lens of EU Non-Discrimination Law: Or
Why the Law is not a Decision Tree [5.153559154345212]
We show that EU non-discrimination law coincides with notions of algorithmic fairness proposed in computer science literature.
We set out the normative underpinnings of fairness metrics and technical interventions and compare these to the legal reasoning of the Court of Justice of the EU.
We conclude with implications for AI practitioners and regulators.
arXiv Detail & Related papers (2023-05-05T12:00:39Z) - Factoring the Matrix of Domination: A Critical Review and Reimagination
of Intersectionality in AI Fairness [55.037030060643126]
Intersectionality is a critical framework that allows us to examine how social inequalities persist.
We argue that adopting intersectionality as an analytical framework is pivotal to effectively operationalizing fairness.
arXiv Detail & Related papers (2023-03-16T21:02:09Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
Given the fact description text of a legal case, legal judgment prediction aims to predict the case's charge, law article and penalty term.
Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss.
We propose a moco-based supervised contrastive learning to learn distinguishable representations.
We further enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model.
arXiv Detail & Related papers (2022-11-15T15:53:56Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Transparency, Compliance, And Contestability When Code Is(n't) Law [91.85674537754346]
Both technical security mechanisms and legal processes serve as mechanisms to deal with misbehaviour according to a set of norms.
While they share general similarities, there are also clear differences in how they are defined, act, and the effect they have on subjects.
This paper considers the similarities and differences between both types of mechanisms as ways of dealing with misbehaviour.
arXiv Detail & Related papers (2022-05-08T18:03:07Z) - Legal perspective on possible fairness measures - A legal discussion
using the example of hiring decisions (preprint) [0.0]
We explain the different kinds of fairness concepts that might be applicable for the specific application of hiring decisions.
We analyze their pros and cons with regard to the respective fairness interpretation and evaluate them from a legal perspective.
arXiv Detail & Related papers (2021-08-16T06:41:39Z) - Towards a Flexible Framework for Algorithmic Fairness [0.8379286663107844]
In recent years, many different definitions for ensuring non-discrimination in algorithmic decision systems have been put forward.
We present an algorithm that harnesses optimal transport to provide a flexible framework to interpolate between different fairness definitions.
arXiv Detail & Related papers (2020-10-15T16:06:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.