Demystifying the Global Convergence Puzzle of Learning
Over-parameterized ReLU Nets in Very High Dimensions
- URL: http://arxiv.org/abs/2206.03254v1
- Date: Sun, 5 Jun 2022 02:14:21 GMT
- Title: Demystifying the Global Convergence Puzzle of Learning
Over-parameterized ReLU Nets in Very High Dimensions
- Authors: Peng He
- Abstract summary: This paper is devoted to rigorous theory for demystifying the global convergence phenomenon in a challenging scenario: learning over-dimensionalized data.
A major ingredient of our theory is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that
- Score: 1.3401746329218014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This theoretical paper is devoted to developing a rigorous theory for
demystifying the global convergence phenomenon in a challenging scenario:
learning over-parameterized Rectified Linear Unit (ReLU) nets for very high
dimensional dataset under very mild assumptions. A major ingredient of our
analysis is a fine-grained analysis of random activation matrices. The
essential virtue of dissecting activation matrices is that it bridges the
dynamics of optimization and angular distribution in high-dimensional data
space. This angle-based detailed analysis leads to asymptotic characterizations
of gradient norm and directional curvature of objective function at each
gradient descent iteration, revealing that the empirical loss function enjoys
nice geometrical properties in the overparameterized setting. Along the way, we
significantly improve existing theoretical bounds on both over-parameterization
condition and learning rate with very mild assumptions for learning very high
dimensional data. Moreover, we uncover the role of the geometrical and spectral
properties of the input data in determining desired over-parameterization size
and global convergence rate. All these clues allow us to discover a novel
geometric picture of nonconvex optimization in deep learning: angular
distribution in high-dimensional data space $\mapsto$ spectrums of
overparameterized activation matrices $\mapsto$ favorable geometrical
properties of empirical loss landscape $\mapsto$ global convergence phenomenon.
Furthremore, our theoretical results imply that gradient-based nonconvex
optimization algorithms have much stronger statistical guarantees with much
milder over-parameterization condition than exisiting theory states for
learning very high dimensional data, which is rarely explored so far.
Related papers
- Convergence of Implicit Gradient Descent for Training Two-Layer Physics-Informed Neural Networks [3.680127959836384]
implicit gradient descent (IGD) outperforms the common gradient descent (GD) in handling certain multi-scale problems.
We show that IGD converges a globally optimal solution at a linear convergence rate.
arXiv Detail & Related papers (2024-07-03T06:10:41Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - The Inductive Bias of Flatness Regularization for Deep Matrix
Factorization [58.851514333119255]
This work takes the first step toward understanding the inductive bias of the minimum trace of the Hessian solutions in deep linear networks.
We show that for all depth greater than one, with the standard Isometry Property (RIP) on the measurements, minimizing the trace of Hessian is approximately equivalent to minimizing the Schatten 1-norm of the corresponding end-to-end matrix parameters.
arXiv Detail & Related papers (2023-06-22T23:14:57Z) - Implicit Balancing and Regularization: Generalization and Convergence
Guarantees for Overparameterized Asymmetric Matrix Sensing [28.77440901439686]
A series of recent papers have begun to generalize this role for non-random Positive Semi-Defin (PSD) matrix sensing problems.
In this paper, we show that the trajectory of the gradient descent from small random measurements moves towards solutions that are both globally well.
arXiv Detail & Related papers (2023-03-24T19:05:52Z) - Laplacian-based Cluster-Contractive t-SNE for High Dimensional Data
Visualization [20.43471678277403]
We propose LaptSNE, a new graph-based dimensionality reduction method based on t-SNE.
Specifically, LaptSNE leverages the eigenvalue information of the graph Laplacian to shrink the potential clusters in the low-dimensional embedding.
We show how to calculate the gradient analytically, which may be of broad interest when considering optimization with Laplacian-composited objective.
arXiv Detail & Related papers (2022-07-25T14:10:24Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
We propose a deep dimension reduction approach to learning representations with essential characteristics.
The proposed approach is a nonparametric generalization of the sufficient dimension reduction method.
We show that the estimated deep nonparametric representation is consistent in the sense that its excess risk converges to zero.
arXiv Detail & Related papers (2020-06-10T14:47:43Z) - The Heavy-Tail Phenomenon in SGD [7.366405857677226]
We show that depending on the structure of the Hessian of the loss at the minimum, the SGD iterates will converge to a emphheavy-tailed stationary distribution.
We translate our results into insights about the behavior of SGD in deep learning.
arXiv Detail & Related papers (2020-06-08T16:43:56Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution.
We show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate.
Our estimator is robust to any model misspecification within the exponential family, which is validated in extensive experiments.
arXiv Detail & Related papers (2020-03-02T16:40:36Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
We develop a convex analytic approach to analyze finite width two-layer ReLU networks.
We show that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set.
In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints.
arXiv Detail & Related papers (2020-02-25T23:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.