Metric Based Few-Shot Graph Classification
- URL: http://arxiv.org/abs/2206.03695v3
- Date: Wed, 30 Oct 2024 07:05:29 GMT
- Title: Metric Based Few-Shot Graph Classification
- Authors: Donato Crisostomi, Simone Antonelli, Valentino Maiorca, Luca Moschella, Riccardo Marin, Emanuele RodolĂ ,
- Abstract summary: Few-shot learning allows employing modern deep learning models in scarce data regimes without waiving their effectiveness.
We show that a simple distance metric learning baseline with a state-of-the-art graph embedder allows to obtain competitive results on the task.
We also propose a MixUp-based online data augmentation technique acting in the latent space and show its effectiveness on the task.
- Score: 18.785949422663233
- License:
- Abstract: Many modern deep-learning techniques do not work without enormous datasets. At the same time, several fields demand methods working in scarcity of data. This problem is even more complex when the samples have varying structures, as in the case of graphs. Graph representation learning techniques have recently proven successful in a variety of domains. Nevertheless, the employed architectures perform miserably when faced with data scarcity. On the other hand, few-shot learning allows employing modern deep learning models in scarce data regimes without waiving their effectiveness. In this work, we tackle the problem of few-shot graph classification, showing that equipping a simple distance metric learning baseline with a state-of-the-art graph embedder allows to obtain competitive results on the task. While the simplicity of the architecture is enough to outperform more complex ones, it also allows straightforward additions. To this end, we show that additional improvements may be obtained by encouraging a task-conditioned embedding space. Finally, we propose a MixUp-based online data augmentation technique acting in the latent space and show its effectiveness on the task.
Related papers
- Condensing Graphs via One-Step Gradient Matching [50.07587238142548]
We propose a one-step gradient matching scheme, which performs gradient matching for only one single step without training the network weights.
Our theoretical analysis shows this strategy can generate synthetic graphs that lead to lower classification loss on real graphs.
In particular, we are able to reduce the dataset size by 90% while approximating up to 98% of the original performance.
arXiv Detail & Related papers (2022-06-15T18:20:01Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - Deep invariant networks with differentiable augmentation layers [87.22033101185201]
Methods for learning data augmentation policies require held-out data and are based on bilevel optimization problems.
We show that our approach is easier and faster to train than modern automatic data augmentation techniques.
arXiv Detail & Related papers (2022-02-04T14:12:31Z) - Graph Few-shot Class-incremental Learning [25.94168397283495]
The ability to incrementally learn new classes is vital to all real-world artificial intelligence systems.
In this paper, we investigate the challenging yet practical problem, Graph Few-shot Class-incremental (Graph FCL) problem.
We put forward a Graph Pseudo Incremental Learning paradigm by sampling tasks recurrently from the base classes.
We present a task-sensitive regularizer calculated from task-level attention and node class prototypes to mitigate overfitting onto either novel or base classes.
arXiv Detail & Related papers (2021-12-23T19:46:07Z) - Scalable Graph Embedding LearningOn A Single GPU [18.142879223260785]
We introduce a hybrid CPU-GPU framework that addresses the challenges of learning embedding of large-scale graphs.
We show that our system can scale training to datasets with an order of magnitude greater than a single machine's total memory capacity.
arXiv Detail & Related papers (2021-10-13T19:09:33Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - Graphs for deep learning representations [1.0152838128195467]
We introduce a graph formalism based on the recent advances in Graph Signal Processing (GSP)
Namely, we use graphs to represent the latent spaces of deep neural networks.
We showcase that this graph formalism allows us to answer various questions including: ensuring robustness, reducing the amount of arbitrary choices in the design of the learning process, improving to small generalizations added to the inputs, and reducing computational complexity.
arXiv Detail & Related papers (2020-12-14T11:51:23Z) - Multimodal Prototypical Networks for Few-shot Learning [20.100480009813953]
Cross-modal feature generation framework is used to enrich the low populated embedding space in few-shot scenarios.
We show that in such cases nearest neighbor classification is a viable approach and outperform state-of-the-art single-modal and multimodal few-shot learning methods.
arXiv Detail & Related papers (2020-11-17T19:32:59Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.