Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks
- URL: http://arxiv.org/abs/2502.14158v1
- Date: Wed, 19 Feb 2025 23:59:05 GMT
- Title: Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks
- Authors: Yonghao Liu, Mengyu Li, Fausto Giunchiglia, Lan Huang, Ximing Li, Xiaoyue Feng, Renchu Guan,
- Abstract summary: We propose a SiMple yet effectIve approach for graph few-shot Learning with fEwer tasks, named SMILE.
We introduce a dual-level mixup strategy, encompassing both within-task and across-task mixup, to simultaneously enrich the available nodes and tasks in meta-learning.
Empirically, SMILE consistently outperforms other competitive models by a large margin across all evaluated datasets with in-domain and cross-domain settings.
- Score: 23.07584018576066
- License:
- Abstract: Graph neural networks have been demonstrated as a powerful paradigm for effectively learning graph-structured data on the web and mining content from it.Current leading graph models require a large number of labeled samples for training, which unavoidably leads to overfitting in few-shot scenarios. Recent research has sought to alleviate this issue by simultaneously leveraging graph learning and meta-learning paradigms. However, these graph meta-learning models assume the availability of numerous meta-training tasks to learn transferable meta-knowledge. Such assumption may not be feasible in the real world due to the difficulty of constructing tasks and the substantial costs involved. Therefore, we propose a SiMple yet effectIve approach for graph few-shot Learning with fEwer tasks, named SMILE. We introduce a dual-level mixup strategy, encompassing both within-task and across-task mixup, to simultaneously enrich the available nodes and tasks in meta-learning. Moreover, we explicitly leverage the prior information provided by the node degrees in the graph to encode expressive node representations. Theoretically, we demonstrate that SMILE can enhance the model generalization ability. Empirically, SMILE consistently outperforms other competitive models by a large margin across all evaluated datasets with in-domain and cross-domain settings. Our anonymous code can be found here.
Related papers
- UniGraph2: Learning a Unified Embedding Space to Bind Multimodal Graphs [34.48393396390799]
We propose a novel cross-domain graph foundation model that enables general representation learning on multimodal graphs.
UniGraph2 employs modality-specific encoders alongside a graph neural network (GNN) to learn a unified low-dimensional embedding space.
We show that UniGraph2 significantly outperforms state-of-the-art models in tasks such as representation learning, transfer learning, and multimodal generative tasks.
arXiv Detail & Related papers (2025-02-02T14:04:53Z) - Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
We introduce a novel approach for learning cross-task generalities in graphs.
We propose task-trees as basic learning instances to align task spaces on graphs.
Our findings indicate that when a graph neural network is pretrained on diverse task-trees, it acquires transferable knowledge.
arXiv Detail & Related papers (2024-12-21T02:07:43Z) - Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks [25.720233631885726]
integration of Graph Neural Networks (GNNs) and Large Language Models (LLMs) has emerged as a promising technological paradigm.
We leverage graph description texts with rich semantic context to fundamentally enhance Data quality.
This work serves as a foundational reference for researchers and practitioners looking to advance graph learning methodologies.
arXiv Detail & Related papers (2024-12-17T01:41:17Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
We present SimTeG, a frustratingly Simple approach for Textual Graph learning.
We first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task.
We then generate node embeddings using the last hidden states of finetuned LM.
arXiv Detail & Related papers (2023-08-03T07:00:04Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Graph Representation Learning for Multi-Task Settings: a Meta-Learning
Approach [5.629161809575013]
We propose a novel training strategy for graph representation learning, based on meta-learning.
Our method avoids the difficulties arising when learning to perform multiple tasks concurrently.
We show that the embeddings produced by a model trained with our method can be used to perform multiple tasks with comparable or, surprisingly, even higher performance than both single-task and multi-task end-to-end models.
arXiv Detail & Related papers (2022-01-10T12:58:46Z) - Graph Few-shot Class-incremental Learning [25.94168397283495]
The ability to incrementally learn new classes is vital to all real-world artificial intelligence systems.
In this paper, we investigate the challenging yet practical problem, Graph Few-shot Class-incremental (Graph FCL) problem.
We put forward a Graph Pseudo Incremental Learning paradigm by sampling tasks recurrently from the base classes.
We present a task-sensitive regularizer calculated from task-level attention and node class prototypes to mitigate overfitting onto either novel or base classes.
arXiv Detail & Related papers (2021-12-23T19:46:07Z) - Weakly-supervised Graph Meta-learning for Few-shot Node Classification [53.36828125138149]
We propose a new graph meta-learning framework -- Graph Hallucination Networks (Meta-GHN)
Based on a new robustness-enhanced episodic training, Meta-GHN is meta-learned to hallucinate clean node representations from weakly-labeled data.
Extensive experiments demonstrate the superiority of Meta-GHN over existing graph meta-learning studies.
arXiv Detail & Related papers (2021-06-12T22:22:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.