論文の概要: Disentangled Ontology Embedding for Zero-shot Learning
- arxiv url: http://arxiv.org/abs/2206.03739v1
- Date: Wed, 8 Jun 2022 08:29:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-09 12:30:29.644219
- Title: Disentangled Ontology Embedding for Zero-shot Learning
- Title(参考訳): ゼロショット学習のための遠絡オントロジー埋め込み
- Authors: Yuxia Geng, Jiaoyan Chen, Wen Zhang, Yajing Xu, Zhuo Chen, Jeff Z.
Pan, Yufeng Huang, Feiyu Xiong, Huajun Chen
- Abstract要約: 知識グラフ(KG)とその変種オントロジーは知識表現に広く用いられており、ゼロショット学習(ZSL)の増強に非常に有効であることが示されている。
KGsを利用する既存のZSL法は、KGsで表されるクラス間関係の複雑さを全て無視する。
本稿では,ZSLの拡張に焦点をあて,意味的特性によって導かれる絡み合ったオントロジーの埋め込みを学習することを提案する。
また、生成モデルとグラフ伝搬モデルに基づく2つの新しいZSLソリューションを含む、DOZSLという新しいZSLフレームワークをコントリビュートする。
- 参考スコア(独自算出の注目度): 39.014714187825646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge Graph (KG) and its variant of ontology have been widely used for
knowledge representation, and have shown to be quite effective in augmenting
Zero-shot Learning (ZSL). However, existing ZSL methods that utilize KGs all
neglect the intrinsic complexity of inter-class relationships represented in
KGs. One typical feature is that a class is often related to other classes in
different semantic aspects. In this paper, we focus on ontologies for
augmenting ZSL, and propose to learn disentangled ontology embeddings guided by
ontology properties to capture and utilize more fine-grained class
relationships in different aspects. We also contribute a new ZSL framework
named DOZSL, which contains two new ZSL solutions based on generative models
and graph propagation models, respectively, for effectively utilizing the
disentangled ontology embeddings. Extensive evaluations have been conducted on
five benchmarks across zero-shot image classification (ZS-IMGC) and zero-shot
KG completion (ZS-KGC). DOZSL often achieves better performance than the
state-of-the-art, and its components have been verified by ablation studies and
case studies. Our codes and datasets are available at
https://github.com/zjukg/DOZSL.
- Abstract(参考訳): 知識グラフ(KG)とその変種オントロジーは知識表現に広く用いられており、ゼロショット学習(ZSL)の増強に非常に有効であることが示されている。
しかし、KGsを利用する既存のZSL法は、KGsで表されるクラス間関係の固有の複雑さを無視している。
典型的な特徴の1つは、クラスがしばしば異なる意味的側面を持つ他のクラスと関連していることである。
本稿では,ZSLの拡張のためのオントロジーに焦点をあて,オントロジー特性によって導かれる絡み合ったオントロジー埋め込みを学習し,よりきめ細かなクラス関係を様々な面から捉え,活用することを提案する。
生成モデルとグラフ伝搬モデルに基づく2つの新しいzslソリューションを含むdozslという新しいzslフレームワークも提供し,異方性オントロジー埋め込みを効果的に活用する。
ゼロショット画像分類 (ZS-IMGC) とゼロショットKG完了 (ZS-KGC) の5つのベンチマークで広範囲に評価されている。
DOZSLはしばしば最先端技術よりも優れた性能を達成しており、その構成要素はアブレーション研究やケーススタディによって検証されている。
私たちのコードとデータセットはhttps://github.com/zjukg/dozslで利用可能です。
関連論文リスト
- Mutual Balancing in State-Object Components for Compositional Zero-Shot
Learning [0.0]
合成ゼロショット学習(CZSL)は、目に見えない状態や物体から未知の合成を認識することを目的としている。
そこで本研究では,CZSLのSTate-Object Components (MUST) におけるMUtual Balanceと呼ばれる新しい手法を提案する。
我々のアプローチは、MIT-States、UT-Zappos、C-GQAといった基本的なCZSLフレームワークと組み合わせることで、最先端のCZSLよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-11-19T10:21:22Z) - Zero-Shot Logit Adjustment [89.68803484284408]
Generalized Zero-Shot Learning (GZSL) は意味記述に基づく学習技術である。
本稿では,分類器の改良を無視しつつ,ジェネレータの効果を高める新しい世代ベース手法を提案する。
実験により,提案手法が基本生成器と組み合わせた場合の最先端化を実現し,様々なゼロショット学習フレームワークを改良できることが実証された。
論文 参考訳(メタデータ) (2022-04-25T17:54:55Z) - FREE: Feature Refinement for Generalized Zero-Shot Learning [86.41074134041394]
汎用ゼロショット学習(GZSL)は、視覚-意味的領域ギャップと目に見えないバイアスの問題を克服するために多くの努力を払って、大きな進歩を遂げた。
既存のほとんどのメソッドはImageNetでトレーニングされた機能抽出モデルを直接使用しており、ImageNetとGZSLベンチマークのデータセット間のバイアスを無視している。
本稿では,この問題に対処するために,汎用ゼロショット学習(FREE)のための特徴改善という,シンプルで効果的なGZSL法を提案する。
論文 参考訳(メタデータ) (2021-07-29T08:11:01Z) - Contrastive Embedding for Generalized Zero-Shot Learning [22.050109158293402]
汎用ゼロショット学習(GZSL)は、目に見えないクラスと見えないクラスの両方からオブジェクトを認識することを目的としている。
最近の特徴生成手法は、見当たらないクラスの視覚的特徴を合成できる生成モデルを学ぶ。
本稿では,生成モデルを組込みモデルに統合し,ハイブリッドgzslフレームワークを実現することを提案する。
論文 参考訳(メタデータ) (2021-03-30T08:54:03Z) - Goal-Oriented Gaze Estimation for Zero-Shot Learning [62.52340838817908]
識別的属性の局在性を改善するために, 目標指向視線推定モジュール(GEM)を提案する。
属性記述に導かれた新しい物体を認識する視覚注意領域を得るために,実際の人間の視線位置を予測することを目的とする。
この研究は、高レベルのコンピュータビジョンタスクに人間の視線データセットと自動視線推定アルゴリズムを集めることの有望な利点を示しています。
論文 参考訳(メタデータ) (2021-03-05T02:14:57Z) - OntoZSL: Ontology-enhanced Zero-shot Learning [19.87808305218359]
Zero-shot Learning(ZSL)の実装の鍵は、クラス間の意味的な関係を構築するクラスの以前の知識を活用することです。
本稿では,zslのクラス間関係をモデル化するために,より豊かで競争力の高い事前知識を探索する。
目に見えないクラス間のデータ不均衡に対処するため,GAN(Generative Adversarial Networks)を用いた生成型ZSLフレームワークを開発した。
論文 参考訳(メタデータ) (2021-02-15T04:39:58Z) - End-to-end Generative Zero-shot Learning via Few-shot Learning [76.9964261884635]
ゼロショット学習(ZSL)の最先端アプローチでは、生成ネットをトレーニングし、提供されたメタデータに条件付きサンプルを合成する。
本稿では,このような手法をバックボーンとして使用し,合成した出力をFew-Shot Learningアルゴリズムに供給するエンドツーエンド生成ZSLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-08T17:35:37Z) - Information Bottleneck Constrained Latent Bidirectional Embedding for
Zero-Shot Learning [59.58381904522967]
本稿では,密な視覚-意味的結合制約を持つ埋め込み型生成モデルを提案する。
視覚空間と意味空間の両方の埋め込みパラメトリック分布を校正する統合潜在空間を学習する。
本手法は, 画像のラベルを生成することにより, トランスダクティブZSL設定に容易に拡張できる。
論文 参考訳(メタデータ) (2020-09-16T03:54:12Z) - Leveraging Seen and Unseen Semantic Relationships for Generative
Zero-Shot Learning [14.277015352910674]
新たな意味正規化損失(SR-Loss)を取り入れた知識伝達を明示的に行う生成モデルを提案する。
7つのベンチマークデータセットの実験は、従来の最先端アプローチと比較してLsrGANの優位性を示している。
論文 参考訳(メタデータ) (2020-07-19T01:25:53Z) - Generative Adversarial Zero-shot Learning via Knowledge Graphs [32.42721467499858]
本稿では,知識グラフ(KG)にリッチセマンティクスを組み込むことにより,KG-GANという新たな生成ZSL手法を提案する。
具体的には、グラフニューラルネットワークに基づいて、クラスビューと属性ビューの2つのビューからKGをエンコードする。
各ノードに対してよく学習されたセマンティックな埋め込み(視覚圏を表す)を用いて、GANを活用して、目に見えないクラスの魅力的な視覚的特徴を合成する。
論文 参考訳(メタデータ) (2020-04-07T03:55:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。