Realistic Zero-Shot Cross-Lingual Transfer in Legal Topic Classification
- URL: http://arxiv.org/abs/2206.03785v1
- Date: Wed, 8 Jun 2022 10:02:11 GMT
- Title: Realistic Zero-Shot Cross-Lingual Transfer in Legal Topic Classification
- Authors: Stratos Xenouleas, Alexia Tsoukara, Giannis Panagiotakis, Ilias
Chalkidis, Ion Androutsopoulos
- Abstract summary: We consider zero-shot cross-lingual transfer in legal topic classification using the recent MultiEURLEX dataset.
Since the original dataset contains parallel documents, which is unrealistic for zero-shot cross-lingual transfer, we develop a new version of the dataset without parallel documents.
We show that translation-based methods vastly outperform cross-lingual fine-tuning of multilingually pre-trained models.
- Score: 21.44895570621707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider zero-shot cross-lingual transfer in legal topic classification
using the recent MultiEURLEX dataset. Since the original dataset contains
parallel documents, which is unrealistic for zero-shot cross-lingual transfer,
we develop a new version of the dataset without parallel documents. We use it
to show that translation-based methods vastly outperform cross-lingual
fine-tuning of multilingually pre-trained models, the best previous zero-shot
transfer method for MultiEURLEX. We also develop a bilingual teacher-student
zero-shot transfer approach, which exploits additional unlabeled documents of
the target language and performs better than a model fine-tuned directly on
labeled target language documents.
Related papers
- Self-Augmentation Improves Zero-Shot Cross-Lingual Transfer [92.80671770992572]
Cross-lingual transfer is a central task in multilingual NLP.
Earlier efforts on this task use parallel corpora, bilingual dictionaries, or other annotated alignment data.
We propose a simple yet effective method, SALT, to improve the zero-shot cross-lingual transfer.
arXiv Detail & Related papers (2023-09-19T19:30:56Z) - Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data.
We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between latent variables using Optimal Transport.
arXiv Detail & Related papers (2023-07-09T04:52:31Z) - DiTTO: A Feature Representation Imitation Approach for Improving
Cross-Lingual Transfer [15.062937537799005]
languages as domains for improving zero-shot transfer.
We show that our approach, DiTTO, significantly outperforms the standard zero-shot fine-tuning method.
Our model enables better cross-lingual transfer than standard fine-tuning methods, even in the few-shot setting.
arXiv Detail & Related papers (2023-03-04T08:42:50Z) - Model and Data Transfer for Cross-Lingual Sequence Labelling in
Zero-Resource Settings [10.871587311621974]
We experimentally demonstrate that high capacity multilingual language models applied in a zero-shot setting consistently outperform data-based cross-lingual transfer approaches.
A detailed analysis of our results suggests that this might be due to important differences in language use.
Our results also indicate that data-based cross-lingual transfer approaches remain a competitive option when high-capacity multilingual language models are not available.
arXiv Detail & Related papers (2022-10-23T05:37:35Z) - Cross-lingual Intermediate Fine-tuning improves Dialogue State Tracking [84.50302759362698]
We enhance the transfer learning process by intermediate fine-tuning of pretrained multilingual models.
We use parallel and conversational movie subtitles datasets to design cross-lingual intermediate tasks.
We achieve impressive improvements (> 20% on goal accuracy) on the parallel MultiWoZ dataset and Multilingual WoZ dataset.
arXiv Detail & Related papers (2021-09-28T11:22:38Z) - Multilingual Document-Level Translation Enables Zero-Shot Transfer From
Sentences to Documents [19.59133362105703]
Document-level neural machine translation (DocNMT) delivers coherent translations by incorporating cross-sentence context.
We study whether and how contextual modeling in DocNMT is transferable from sentences to documents in a zero-shot fashion.
arXiv Detail & Related papers (2021-09-21T17:49:34Z) - MultiEURLEX -- A multi-lingual and multi-label legal document
classification dataset for zero-shot cross-lingual transfer [13.24356999779404]
We introduce MULTI-EURLEX, a new multilingual dataset for topic classification of legal documents.
The dataset comprises 65k European Union (EU) laws, officially translated in 23 languages, annotated with multiple labels from the EUROVOC taxonomy.
We use the dataset as a testbed for zero-shot cross-lingual transfer, where we exploit annotated training documents in one language (source) to classify documents in another language (target)
arXiv Detail & Related papers (2021-09-02T12:52:55Z) - Bilingual Alignment Pre-training for Zero-shot Cross-lingual Transfer [33.680292990007366]
In this paper, we aim to improve the zero-shot cross-lingual transfer performance by aligning the embeddings better.
We propose a pre-training task named Alignment Language Model (AlignLM) which uses the statistical alignment information as the prior knowledge to guide bilingual word prediction.
The results show AlignLM can improve the zero-shot performance significantly on MLQA and XNLI datasets.
arXiv Detail & Related papers (2021-06-03T10:18:43Z) - Zero-Shot Cross-lingual Semantic Parsing [56.95036511882921]
We study cross-lingual semantic parsing as a zero-shot problem without parallel data for 7 test languages.
We propose a multi-task encoder-decoder model to transfer parsing knowledge to additional languages using only English-Logical form paired data.
Our system frames zero-shot parsing as a latent-space alignment problem and finds that pre-trained models can be improved to generate logical forms with minimal cross-lingual transfer penalty.
arXiv Detail & Related papers (2021-04-15T16:08:43Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
We propose an enhanced fusion method that takes cross-lingual data as input for XLM finetuning.
During inference, the model makes predictions based on the text input in the target language and its translation in the source language.
To tackle this issue, we propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language.
arXiv Detail & Related papers (2020-09-10T22:42:15Z) - From Zero to Hero: On the Limitations of Zero-Shot Cross-Lingual
Transfer with Multilingual Transformers [62.637055980148816]
Massively multilingual transformers pretrained with language modeling objectives have become a de facto default transfer paradigm for NLP.
We show that cross-lingual transfer via massively multilingual transformers is substantially less effective in resource-lean scenarios and for distant languages.
arXiv Detail & Related papers (2020-05-01T22:04:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.