論文の概要: Few-shot Prompting Towards Controllable Response Generation
- arxiv url: http://arxiv.org/abs/2206.03931v2
- Date: Thu, 9 Jun 2022 10:16:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-10 11:34:26.945344
- Title: Few-shot Prompting Towards Controllable Response Generation
- Title(参考訳): 制御可能な応答生成に向けたFew-shot Prompting
- Authors: Hsuan Su, Pohan Chi, Shih-Cheng Huang, Chung Ho Lam, Saurav Sahay,
Shang-Tse Chen, Hung-yi Lee
- Abstract要約: まず,モデルのパラメータにアクセスすることなく,モデル生成に対するプロンプトと強化学習(RL)の組み合わせについて検討した。
マルチタスク学習を適用して、モデルが新しいタスクをより良く一般化できるようにします。
実験の結果,提案手法はパラメータにアクセスすることなく,複数のSOTA(State-of-the-art)対話モデルを制御することができることがわかった。
- 参考スコア(独自算出の注目度): 49.479958672988566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Much literature has shown that prompt-based learning is an efficient method
to make use of the large pre-trained language model. Recent works also exhibit
the possibility of steering a chatbot's output by plugging in an appropriate
prompt. Gradient-based methods are often used to perturb the prompts. However,
some language models are not even available to the public. In this work, we
first explored the combination of prompting and reinforcement learning (RL) to
steer models' generation without accessing any of the models' parameters.
Second, to reduce the training effort and enhance the generalizability to the
unseen task, we apply multi-task learning to make the model learn to generalize
to new tasks better. The experiment results show that our proposed method can
successfully control several state-of-the-art (SOTA) dialogue models without
accessing their parameters. Furthermore, the model demonstrates the strong
ability to quickly adapt to an unseen task in fewer steps than the baseline
model.
- Abstract(参考訳): 多くの文献が、プロンプトベースの学習は、大規模な事前学習言語モデルを利用するための効率的な方法であることを示した。
最近の研究では、適切なプロンプトを差し込んでチャットボットの出力を操る可能性も示されている。
勾配に基づく手法は、しばしばプロンプトを乱すために使われる。
しかし、一部の言語モデルは一般には利用できない。
本研究ではまず,モデルのパラメータにアクセスせずにモデル生成を操るためのプロンプトと強化学習(RL)の組み合わせについて検討した。
第二に、トレーニングの労力を減らし、目に見えないタスクへの一般化性を高めるために、モデルを学習させて新しいタスクに一般化させるマルチタスク学習を適用する。
実験の結果,提案手法はパラメータにアクセスすることなく,複数のSOTA(State-of-the-art)対話モデルを制御することができることがわかった。
さらに、モデルは、ベースラインモデルよりも少ないステップで、目に見えないタスクに迅速に適応できる強力な能力を示す。
関連論文リスト
- EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
大規模言語モデルのコンパクトなベクトル表現を学習するためのフレームワークである EmbedLLM を提案する。
このような埋め込みを学習するためのエンコーダ-デコーダアプローチと,その有効性を評価するための体系的なフレームワークを導入する。
EmbedLLMはモデルルーティングにおいて,精度とレイテンシの両方において,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-03T05:43:24Z) - Stabilized In-Context Learning with Pre-trained Language Models for Few
Shot Dialogue State Tracking [57.92608483099916]
大規模事前学習言語モデル(PLM)は、多くのNLPタスクにまたがる優れた性能を示している。
対話状態追跡(DST)のようなより複雑なタスクでは、望ましい意図を確実に伝達するプロンプトを設計するのは簡単ではない。
対話文の長さを制限するためのサリエンシモデルを導入し、クエリ毎に多くの例を含めることができます。
論文 参考訳(メタデータ) (2023-02-12T15:05:10Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Zero-Shot Learners for Natural Language Understanding via a Unified
Multiple Choice Perspective [26.41585967095811]
ゼロショット学習は、与えられたタスクでモデルをトレーニングすることを目的としており、追加のトレーニングなしで新しい学習タスクに対処できる。
提案手法は、ゼロショット学習を複数選択タスクに変換し、FLANなどの大規模生成モデルで一般的に使用される問題を回避する。
提案手法は,いくつかのベンチマークにおいて最先端の性能を示し,自然言語推論やテキスト分類といったタスクに対して良好な結果をもたらす。
論文 参考訳(メタデータ) (2022-10-16T17:24:06Z) - Bidirectional Language Models Are Also Few-shot Learners [54.37445173284831]
SAP(Sequential Autoregressive Prompting)は,双方向モデルの高速化を実現する技術である。
SAPは質問応答と要約に有効であることを示す。
この結果から,より広範な言語モデルの創発的特性として,プロンプトに基づく学習が証明された。
論文 参考訳(メタデータ) (2022-09-29T01:35:57Z) - Interactive and Visual Prompt Engineering for Ad-hoc Task Adaptation
with Large Language Models [116.25562358482962]
最先端のニューラルネットワークモデルは、教師付きトレーニングを必要とせずに、アドホックな言語タスクを解決するために使用することができる。
PromptIDEを使えば、ユーザはプロンプトのバリエーションを試すことができ、プロンプトのパフォーマンスを視覚化し、反復的にプロンプトを最適化できる。
論文 参考訳(メタデータ) (2022-08-16T17:17:53Z) - An Exploration of Prompt Tuning on Generative Spoken Language Model for
Speech Processing Tasks [112.1942546460814]
生成音声言語モデル(GSLM)に基づく音声処理タスクの即時チューニングパラダイムの最初の検討について報告する。
実験結果から, 学習可能なパラメータが少ない音声分類タスクにおいて, 高精度なダウンストリームモデルよりも, 即時チューニング手法が競合性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2022-03-31T03:26:55Z) - Differentiable Prompt Makes Pre-trained Language Models Better Few-shot
Learners [23.150999852147283]
本研究は,differiAble pRompT (DART) という新規で効率的なアプローチを提案する。
小さな言語モデルを、素早いエンジニアリングなしで、より優れた数ショットの学習者に変換することができる。
標準NLPタスクの包括的な評価は、提案手法がより優れた数ショット性能を実現することを示す。
論文 参考訳(メタデータ) (2021-08-30T12:29:25Z) - Prompt Programming for Large Language Models: Beyond the Few-Shot
Paradigm [0.0]
自然言語のレンズを通してプロンプトを考えることの有用性を強調しながら,プロンプトプログラミングの手法について論じる。
モデルに種を付けて、さまざまなタスクのための独自の自然言語プロンプトを生成するメタプロンプトのアイデアを紹介します。
論文 参考訳(メタデータ) (2021-02-15T05:27:55Z) - AutoPrompt: Eliciting Knowledge from Language Models with Automatically
Generated Prompts [46.03503882865222]
AutoPromptは、勾配誘導検索に基づいて、さまざまなタスクセットのプロンプトを作成する自動メソッドである。
マスク付き言語モデル(MLM)は,感情分析や自然言語推論を,追加パラメータや微調整を伴わずに行う能力を持つことを示す。
論文 参考訳(メタデータ) (2020-10-29T22:54:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。