Topic-Controllable Summarization: Topic-Aware Evaluation and Transformer Methods
- URL: http://arxiv.org/abs/2206.04317v4
- Date: Wed, 17 Apr 2024 11:55:14 GMT
- Title: Topic-Controllable Summarization: Topic-Aware Evaluation and Transformer Methods
- Authors: Tatiana Passali, Grigorios Tsoumakas,
- Abstract summary: Topic-controllable summarization is an emerging research area with a wide range of potential applications.
This work proposes a new topic-oriented evaluation measure to automatically evaluate the generated summaries.
In addition, we adapt topic embeddings to work with powerful Transformer architectures and propose a novel and efficient approach for guiding the summary generation through control tokens.
- Score: 4.211128681972148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topic-controllable summarization is an emerging research area with a wide range of potential applications. However, existing approaches suffer from significant limitations. For example, the majority of existing methods built upon recurrent architectures, which can significantly limit their performance compared to more recent Transformer-based architectures, while they also require modifications to the model's architecture for controlling the topic. At the same time, there is currently no established evaluation metric designed specifically for topic-controllable summarization. This work proposes a new topic-oriented evaluation measure to automatically evaluate the generated summaries based on the topic affinity between the generated summary and the desired topic. The reliability of the proposed measure is demonstrated through appropriately designed human evaluation. In addition, we adapt topic embeddings to work with powerful Transformer architectures and propose a novel and efficient approach for guiding the summary generation through control tokens. Experimental results reveal that control tokens can achieve better performance compared to more complicated embedding-based approaches while also being significantly faster.
Related papers
- Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation [51.06031200728449]
We propose a novel framework called mccHRL to provide different levels of temporal abstraction on listwise recommendation.
Within the hierarchical framework, the high-level agent studies the evolution of user perception, while the low-level agent produces the item selection policy.
Results observe significant performance improvement by our method, compared with several well-known baselines.
arXiv Detail & Related papers (2024-09-11T17:01:06Z) - Controllable Topic-Focused Abstractive Summarization [57.8015120583044]
Controlled abstractive summarization focuses on producing condensed versions of a source article to cover specific aspects.
This paper presents a new Transformer-based architecture capable of producing topic-focused summaries.
arXiv Detail & Related papers (2023-11-12T03:51:38Z) - Coherent Entity Disambiguation via Modeling Topic and Categorical
Dependency [87.16283281290053]
Previous entity disambiguation (ED) methods adopt a discriminative paradigm, where prediction is made based on matching scores between mention context and candidate entities.
We propose CoherentED, an ED system equipped with novel designs aimed at enhancing the coherence of entity predictions.
We achieve new state-of-the-art results on popular ED benchmarks, with an average improvement of 1.3 F1 points.
arXiv Detail & Related papers (2023-11-06T16:40:13Z) - ConvFormer: Revisiting Transformer for Sequential User Modeling [23.650635274170828]
We re-examine Transformer-like architectures aiming to advance state-of-the-art performance.
We identify three essential criteria for devising efficient sequential user models.
We introduce ConvFormer, a simple but powerful modification to the Transformer architecture that meets these criteria.
arXiv Detail & Related papers (2023-08-05T17:33:17Z) - Extended High Utility Pattern Mining: An Answer Set Programming Based
Framework and Applications [0.0]
Rule-based languages like ASP seem well suited for specifying user-provided criteria to assess pattern utility.
We introduce a new framework that allows for new classes of utility criteria not considered in the previous literature.
We exploit it as a building block for the definition of an innovative method for predicting ICU admission for COVID-19 patients.
arXiv Detail & Related papers (2023-03-23T11:42:57Z) - Parallel Hierarchical Transformer with Attention Alignment for
Abstractive Multi-Document Summarization [4.035753155957699]
Abstractive Multi-Document Summarization (MDS) brings challenges on the representation and coverage of its lengthy and linked sources.
This study develops a Parallel Hierarchical Transformer (PHT) with attention alignment for MDS.
arXiv Detail & Related papers (2022-08-16T17:02:48Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality
Assessment [93.09267863425492]
We argue that understanding both high-level semantics and internal temporal structures of actions in competitive sports videos is the key to making predictions accurate and interpretable.
We construct a new fine-grained dataset, called FineDiving, developed on diverse diving events with detailed annotations on action procedures.
arXiv Detail & Related papers (2022-04-07T17:59:32Z) - Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
We propose a principled inference framework to improve summarization models on two aspects.
Our framework assumes a hierarchical latent structure of a document where the top-level captures the long range dependency.
We demonstrate the effectiveness of the proposed framework on a diverse set of summarization datasets.
arXiv Detail & Related papers (2022-03-15T01:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.