Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation
- URL: http://arxiv.org/abs/2409.07416v1
- Date: Wed, 11 Sep 2024 17:01:06 GMT
- Title: Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation
- Authors: Luo Ji, Gao Liu, Mingyang Yin, Hongxia Yang, Jingren Zhou,
- Abstract summary: We propose a novel framework called mccHRL to provide different levels of temporal abstraction on listwise recommendation.
Within the hierarchical framework, the high-level agent studies the evolution of user perception, while the low-level agent produces the item selection policy.
Results observe significant performance improvement by our method, compared with several well-known baselines.
- Score: 51.06031200728449
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Modern listwise recommendation systems need to consider both long-term user perceptions and short-term interest shifts. Reinforcement learning can be applied on recommendation to study such a problem but is also subject to large search space, sparse user feedback and long interactive latency. Motivated by recent progress in hierarchical reinforcement learning, we propose a novel framework called mccHRL to provide different levels of temporal abstraction on listwise recommendation. Within the hierarchical framework, the high-level agent studies the evolution of user perception, while the low-level agent produces the item selection policy by modeling the process as a sequential decision-making problem. We argue that such framework has a well-defined decomposition of the outra-session context and the intra-session context, which are encoded by the high-level and low-level agents, respectively. To verify this argument, we implement both a simulator-based environment and an industrial dataset-based experiment. Results observe significant performance improvement by our method, compared with several well-known baselines. Data and codes have been made public.
Related papers
- Dual Contrastive Transformer for Hierarchical Preference Modeling in Sequential Recommendation [23.055217651991537]
Sequential recommender systems (SRSs) aim to predict the subsequent items which may interest users.
Most of existing SRSs often model users' single low-level preference based on item ID information.
We propose a novel hierarchical preference modeling framework to substantially model the complex low- and high-level preference dynamics.
arXiv Detail & Related papers (2024-10-30T08:09:33Z) - Layer-of-Thoughts Prompting (LoT): Leveraging LLM-Based Retrieval with Constraint Hierarchies [0.3946282433423277]
Layer-of-Thoughts Prompting (LoT) uses constraint hierarchies to filter and refine candidate responses to a given query.
LoT significantly improves the accuracy and comprehensibility of information retrieval tasks.
arXiv Detail & Related papers (2024-10-16T01:20:44Z) - A Controlled Study on Long Context Extension and Generalization in LLMs [85.4758128256142]
Broad textual understanding and in-context learning require language models that utilize full document contexts.
Due to the implementation challenges associated with directly training long-context models, many methods have been proposed for extending models to handle long contexts.
We implement a controlled protocol for extension methods with a standardized evaluation, utilizing consistent base models and extension data.
arXiv Detail & Related papers (2024-09-18T17:53:17Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Rethinking Decision Transformer via Hierarchical Reinforcement Learning [54.3596066989024]
Decision Transformer (DT) is an innovative algorithm leveraging recent advances of the transformer architecture in reinforcement learning (RL)
We introduce a general sequence modeling framework for studying sequential decision making through the lens of Hierarchical RL.
We show DT emerges as a special case of this framework with certain choices of high-level and low-level policies, and discuss the potential failure of these choices.
arXiv Detail & Related papers (2023-11-01T03:32:13Z) - From proprioception to long-horizon planning in novel environments: A
hierarchical RL model [4.44317046648898]
In this work, we introduce a simple, three-level hierarchical architecture that reflects different types of reasoning.
We apply our method to a series of navigation tasks in the Mujoco Ant environment.
arXiv Detail & Related papers (2020-06-11T17:19:12Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
We propose self-supervised reinforcement learning for sequential recommendation tasks.
Our approach augments standard recommendation models with two output layers: one for self-supervised learning and the other for RL.
Based on such an approach, we propose two frameworks namely Self-Supervised Q-learning(SQN) and Self-Supervised Actor-Critic(SAC)
arXiv Detail & Related papers (2020-06-10T11:18:57Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.