An FPGA-based Solution for Convolution Operation Acceleration
- URL: http://arxiv.org/abs/2206.04520v1
- Date: Thu, 9 Jun 2022 14:12:30 GMT
- Title: An FPGA-based Solution for Convolution Operation Acceleration
- Authors: Trung Dinh Pham, Bao Gia Bach, Lam Trinh Luu, Minh Dinh Nguyen, Hai
Duc Pham, Khoa Bui Anh, Xuan Quang Nguyen, Cuong Pham Quoc
- Abstract summary: This paper proposes an FPGA-based architecture to accelerate the convolution operation.
The project's purpose is to produce an FPGA IP core that can process a convolutional layer at a time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hardware-based acceleration is an extensive attempt to facilitate many
computationally-intensive mathematics operations. This paper proposes an
FPGA-based architecture to accelerate the convolution operation - a complex and
expensive computing step that appears in many Convolutional Neural Network
models. We target the design to the standard convolution operation, intending
to launch the product as an edge-AI solution. The project's purpose is to
produce an FPGA IP core that can process a convolutional layer at a time.
System developers can deploy the IP core with various FPGA families by using
Verilog HDL as the primary design language for the architecture. The
experimental results show that our single computing core synthesized on a
simple edge computing FPGA board can offer 0.224 GOPS. When the board is fully
utilized, 4.48 GOPS can be achieved.
Related papers
- INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
Gradient Computations in Implicit Neural Representation Processing [66.00729477511219]
Given a function represented as a computation graph, traditional architectures face challenges in efficiently computing its nth-order gradient.
We introduce INR-Arch, a framework that transforms the computation graph of an nth-order gradient into a hardware-optimized dataflow architecture.
We present results that demonstrate 1.8-4.8x and 1.5-3.6x speedup compared to CPU and GPU baselines respectively.
arXiv Detail & Related papers (2023-08-11T04:24:39Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications.
The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.
arXiv Detail & Related papers (2023-05-24T16:08:55Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs)
This makes efficient NN implementations in hardware accessible to nonexperts, in a single open-sourced workflow.
We demonstrate the workflow in a particle physics application involving trigger decisions that must operate at the 40 MHz collision rate of the Large Hadron Collider (LHC)
We implement an optimized mixed-precision NN for high-momentum particle jets in simulated LHC proton-proton collisions.
arXiv Detail & Related papers (2023-04-13T18:00:01Z) - HARFLOW3D: A Latency-Oriented 3D-CNN Accelerator Toolflow for HAR on
FPGA Devices [71.45672882756001]
This study introduces a novel streaming architecture based toolflow for mapping 3D Convolutional Neural Networks onto FPGAs.
The HARFLOW3D toolflow takes as input a 3D CNN in ONNX format and a description of the FPGA characteristics.
The ability of the toolflow to support a broad range of models and devices is shown through a number of experiments on various 3D CNN and FPGA system pairs.
arXiv Detail & Related papers (2023-03-30T08:25:27Z) - Optimization of FPGA-based CNN Accelerators Using Metaheuristics [1.854931308524932]
convolutional neural networks (CNNs) have demonstrated their ability to solve problems in many fields.
FPGAs have seen a surge in interest for accelerating CNN inference.
Current trend in FPGA-based CNN accelerators is to implement multiple convolutional layer processors (CLPs)
arXiv Detail & Related papers (2022-09-22T18:57:49Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
Attention-based neural networks have become pervasive in many AI tasks.
The use of the attention mechanism and feed-forward network (FFN) demands excessive computational and memory resources.
This paper proposes a hardware-friendly variant that adopts a unified butterfly sparsity pattern to approximate both the attention mechanism and the FFNs.
arXiv Detail & Related papers (2022-09-20T09:28:26Z) - FFCNN: Fast FPGA based Acceleration for Convolution neural network
inference [0.0]
We present Fast Inference on FPGAs for Convolution Neural Network (FFCNN)
FFCNN is based on a deeply pipelined OpenCL kernels architecture.
Data reuse and task mapping techniques are also presented to improve design efficiency.
arXiv Detail & Related papers (2022-08-28T16:55:25Z) - Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark [11.575901540758574]
We present our development experience for the Tiny Inference Benchmark on field-programmable gate array (FPGA) platforms.
We use the open-source hls4ml and FINN perJ, which aim to democratize AI- hardware codesign of optimized neural networks on FPGAs.
The solutions are deployed on system-on-chip (Pynq-Z2) and pure FPGA (Arty A7-100T) platforms.
arXiv Detail & Related papers (2022-06-23T15:57:17Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - HALF: Holistic Auto Machine Learning for FPGAs [1.9146960682777232]
Deep Neural Networks (DNNs) are capable of solving complex problems in domains related to embedded systems, such as image and natural language processing.
To efficiently implement DNNs on a specific FPGA platform for a given cost criterion, e.g. energy efficiency, an enormous amount of design parameters has to be considered.
An automatic, holistic design approach can improve the quality of DNN implementations on FPGA significantly.
arXiv Detail & Related papers (2021-06-28T14:45:47Z) - Accelerated Charged Particle Tracking with Graph Neural Networks on
FPGAs [0.0]
We develop and study FPGA implementations of algorithms for charged particle tracking based on graph neural networks.
We find a considerable speedup over CPU-based execution is possible, potentially enabling such algorithms to be used effectively in future computing.
arXiv Detail & Related papers (2020-11-30T18:17:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.