A Critical Review on the Use (and Misuse) of Differential Privacy in
Machine Learning
- URL: http://arxiv.org/abs/2206.04621v1
- Date: Thu, 9 Jun 2022 17:13:10 GMT
- Title: A Critical Review on the Use (and Misuse) of Differential Privacy in
Machine Learning
- Authors: Alberto Blanco-Justicia, David Sanchez, Josep Domingo-Ferrer,
Krishnamurty Muralidhar
- Abstract summary: We review the use of differential privacy (DP) for privacy protection in machine learning (ML)
We show that, driven by the aim of preserving the accuracy of the learned models, DP-based ML implementations are so loose that they do not offer the ex ante privacy guarantees of DP.
- Score: 5.769445676575767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We review the use of differential privacy (DP) for privacy protection in
machine learning (ML). We show that, driven by the aim of preserving the
accuracy of the learned models, DP-based ML implementations are so loose that
they do not offer the ex ante privacy guarantees of DP. Instead, what they
deliver is basically noise addition similar to the traditional (and often
criticized) statistical disclosure control approach. Due to the lack of formal
privacy guarantees, the actual level of privacy offered must be experimentally
assessed ex post, which is done very seldom. In this respect, we present
empirical results showing that standard anti-overfitting techniques in ML can
achieve a better utility/privacy/efficiency trade-off than DP.
Related papers
- Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Evaluations of Machine Learning Privacy Defenses are Misleading [25.007083740549845]
Empirical defenses for machine learning privacy forgo the provable guarantees of differential privacy.
We show that prior evaluations fail to characterize the privacy leakage of the most vulnerable samples.
arXiv Detail & Related papers (2024-04-26T13:21:30Z) - Federated Experiment Design under Distributed Differential Privacy [31.06808163362162]
We focus on the rigorous protection of users' privacy while minimizing the trust toward service providers.
Although a vital component in modern A/B testing, private distributed experimentation has not previously been studied.
We show how these mechanisms can be scaled up to handle the very large number of participants commonly found in practice.
arXiv Detail & Related papers (2023-11-07T22:38:56Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
We propose a new differential privacy paradigm called estimate-verify-release (EVR)
EVR paradigm first estimates the privacy parameter of a mechanism, then verifies whether it meets this guarantee, and finally releases the query output.
Our empirical evaluation shows the newly proposed EVR paradigm improves the utility-privacy tradeoff for privacy-preserving machine learning.
arXiv Detail & Related papers (2023-04-17T00:38:01Z) - How to DP-fy ML: A Practical Guide to Machine Learning with Differential
Privacy [22.906644117887133]
Differential Privacy (DP) has become a gold standard for making formal statements about data anonymization.
The adoption of DP is hindered by limited practical guidance of what DP protection entails, what privacy guarantees to aim for, and the difficulty of achieving good privacy-utility-computation trade-offs for ML models.
This work is a self-contained guide that gives an in-depth overview of the field of DP ML and presents information about achieving the best possible DP ML model with rigorous privacy guarantees.
arXiv Detail & Related papers (2023-03-01T16:56:39Z) - Tight Auditing of Differentially Private Machine Learning [77.38590306275877]
For private machine learning, existing auditing mechanisms are tight.
They only give tight estimates under implausible worst-case assumptions.
We design an improved auditing scheme that yields tight privacy estimates for natural (not adversarially crafted) datasets.
arXiv Detail & Related papers (2023-02-15T21:40:33Z) - Privacy in Practice: Private COVID-19 Detection in X-Ray Images
(Extended Version) [3.750713193320627]
We create machine learning models that satisfy Differential Privacy (DP)
We evaluate the utility-privacy trade-off more extensively and over stricter privacy budgets.
Our results indicate that needed privacy levels might differ based on the task-dependent practical threat from MIAs.
arXiv Detail & Related papers (2022-11-21T13:22:29Z) - No Free Lunch in "Privacy for Free: How does Dataset Condensation Help
Privacy" [75.98836424725437]
New methods designed to preserve data privacy require careful scrutiny.
Failure to preserve privacy is hard to detect, and yet can lead to catastrophic results when a system implementing a privacy-preserving'' method is attacked.
arXiv Detail & Related papers (2022-09-29T17:50:23Z) - Production of Categorical Data Verifying Differential Privacy:
Conception and Applications to Machine Learning [0.0]
Differential privacy is a formal definition that allows quantifying the privacy-utility trade-off.
With the local DP (LDP) model, users can sanitize their data locally before transmitting it to the server.
In all cases, we concluded that differentially private ML models achieve nearly the same utility metrics as non-private ones.
arXiv Detail & Related papers (2022-04-02T12:50:14Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
We design privacy preserving exploration policies for episodic reinforcement learning (RL)
We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)
We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee.
arXiv Detail & Related papers (2020-09-18T20:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.