Temporal Logic Imitation: Learning Plan-Satisficing Motion Policies from
Demonstrations
- URL: http://arxiv.org/abs/2206.04632v1
- Date: Thu, 9 Jun 2022 17:25:22 GMT
- Title: Temporal Logic Imitation: Learning Plan-Satisficing Motion Policies from
Demonstrations
- Authors: Yanwei Wang, Nadia Figueroa, Shen Li, Ankit Shah, Julie Shah
- Abstract summary: Learning from demonstration (LfD) methods have shown promise for solving multi-step tasks.
In this work, we identify the roots of such a challenge as the failure of the learned continuous policy to satisfy the discrete plan implicit in the demonstration.
We prove our learned continuous policy can simulate any discrete plan specified by a Linear Temporal Logic (LTL) formula.
- Score: 15.762916270583698
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Learning from demonstration (LfD) methods have shown promise for solving
multi-step tasks; however, these approaches do not guarantee successful
reproduction of the task given disturbances. In this work, we identify the
roots of such a challenge as the failure of the learned continuous policy to
satisfy the discrete plan implicit in the demonstration. By utilizing modes
(rather than subgoals) as the discrete abstraction and motion policies with
both mode invariance and goal reachability properties, we prove our learned
continuous policy can simulate any discrete plan specified by a Linear Temporal
Logic (LTL) formula. Consequently, the imitator is robust to both task- and
motion-level disturbances and guaranteed to achieve task success. Project page:
https://sites.google.com/view/ltl-ds
Related papers
- Guided Reinforcement Learning for Robust Multi-Contact Loco-Manipulation [12.377289165111028]
Reinforcement learning (RL) often necessitates a meticulous Markov Decision Process (MDP) design tailored to each task.
This work proposes a systematic approach to behavior synthesis and control for multi-contact loco-manipulation tasks.
We define a task-independent MDP to train RL policies using only a single demonstration per task generated from a model-based trajectory.
arXiv Detail & Related papers (2024-10-17T17:46:27Z) - DeepLTL: Learning to Efficiently Satisfy Complex LTL Specifications [59.01527054553122]
Linear temporal logic (LTL) has recently been adopted as a powerful formalism for specifying complex, temporally extended tasks in reinforcement learning (RL)
Existing approaches suffer from several shortcomings: they are often only applicable to finite-horizon fragments, are restricted to suboptimal solutions, and do not adequately handle safety constraints.
In this work, we propose a novel learning approach to address these concerns.
Our method leverages the structure of B"uchia, which explicitly represent the semantics of automat- specifications, to learn policies conditioned on sequences of truth assignments that lead to satisfying the desired formulae.
arXiv Detail & Related papers (2024-10-06T21:30:38Z) - Single-Shot Learning of Stable Dynamical Systems for Long-Horizon Manipulation Tasks [48.54757719504994]
This paper focuses on improving task success rates while reducing the amount of training data needed.
Our approach introduces a novel method that segments long-horizon demonstrations into discrete steps defined by waypoints and subgoals.
We validate our approach through both simulation and real-world experiments, demonstrating effective transfer from simulation to physical robotic platforms.
arXiv Detail & Related papers (2024-10-01T19:49:56Z) - Validity Learning on Failures: Mitigating the Distribution Shift in Autonomous Vehicle Planning [2.3558144417896583]
The planning problem constitutes a fundamental aspect of the autonomous driving framework.
We propose Validity Learning on Failures, VL(on failure) as a remedy to address this issue.
We show that VL(on failure) outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2024-06-03T17:25:18Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Task Phasing: Automated Curriculum Learning from Demonstrations [46.1680279122598]
Applying reinforcement learning to sparse reward domains is notoriously challenging due to insufficient guiding signals.
This paper introduces a principled task phasing approach that uses demonstrations to automatically generate a curriculum sequence.
Experimental results on 3 sparse reward domains demonstrate that our task phasing approaches outperform state-of-the-art approaches with respect to performance.
arXiv Detail & Related papers (2022-10-20T03:59:11Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
Planning at Test-time (IMPLANT) is a new meta-algorithm for imitation learning.
We demonstrate that IMPLANT significantly outperforms benchmark imitation learning approaches on standard control environments.
arXiv Detail & Related papers (2022-04-07T17:16:52Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
This paper investigates the motion planning of autonomous dynamical systems modeled by Markov decision processes (MDP)
The novelty is to design an embedded product MDP (EP-MDP) between the LDGBA and the MDP.
The proposed LDGBA-based reward shaping and discounting schemes for the model-free reinforcement learning (RL) only depend on the EP-MDP states.
arXiv Detail & Related papers (2021-02-24T01:11:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.