VideoINR: Learning Video Implicit Neural Representation for Continuous
Space-Time Super-Resolution
- URL: http://arxiv.org/abs/2206.04647v1
- Date: Thu, 9 Jun 2022 17:45:49 GMT
- Title: VideoINR: Learning Video Implicit Neural Representation for Continuous
Space-Time Super-Resolution
- Authors: Zeyuan Chen, Yinbo Chen, Jingwen Liu, Xingqian Xu, Vidit Goel,
Zhangyang Wang, Humphrey Shi, Xiaolong Wang
- Abstract summary: We show that Video Implicit Neural Representation (VideoINR) can be decoded to videos of arbitrary spatial resolution and frame rate.
We show that VideoINR achieves competitive performances with state-of-the-art STVSR methods on common up-sampling scales.
- Score: 75.79379734567604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Videos typically record the streaming and continuous visual data as discrete
consecutive frames. Since the storage cost is expensive for videos of high
fidelity, most of them are stored in a relatively low resolution and frame
rate. Recent works of Space-Time Video Super-Resolution (STVSR) are developed
to incorporate temporal interpolation and spatial super-resolution in a unified
framework. However, most of them only support a fixed up-sampling scale, which
limits their flexibility and applications. In this work, instead of following
the discrete representations, we propose Video Implicit Neural Representation
(VideoINR), and we show its applications for STVSR. The learned implicit neural
representation can be decoded to videos of arbitrary spatial resolution and
frame rate. We show that VideoINR achieves competitive performances with
state-of-the-art STVSR methods on common up-sampling scales and significantly
outperforms prior works on continuous and out-of-training-distribution scales.
Our project page is at http://zeyuan-chen.com/VideoINR/ .
Related papers
- HR-INR: Continuous Space-Time Video Super-Resolution via Event Camera [22.208120663778043]
Continuous space-time super-resolution (C-STVSR) aims to simultaneously enhance resolution and frame rate at an arbitrary scale.
We propose a novel C-STVSR framework, called HR-INR, which captures both holistic dependencies and regional motions based on implicit neural representation (INR)
We then propose a novel INR-based decoder withtemporal embeddings to capture long-term dependencies with a larger temporal perception field.
arXiv Detail & Related papers (2024-05-22T06:51:32Z) - A Codec Information Assisted Framework for Efficient Compressed Video
Super-Resolution [15.690562510147766]
Video Super-Resolution (VSR) using recurrent neural network architecture is a promising solution due to its efficient modeling of long-range temporal dependencies.
We propose a Codec Information Assisted Framework (CIAF) to boost and accelerate recurrent VSR models for compressed videos.
arXiv Detail & Related papers (2022-10-15T08:48:29Z) - Sliding Window Recurrent Network for Efficient Video Super-Resolution [0.0]
Video super-resolution (VSR) is the task of restoring high-resolution frames from a sequence of low-resolution inputs.
We propose a textitSliding Window based Recurrent Network (SWRN) which can be real-time inference while still achieving superior performance.
Our experiment on REDS dataset shows that the proposed method can be well adapted to mobile devices and produce visually pleasant results.
arXiv Detail & Related papers (2022-08-24T15:23:44Z) - Towards Interpretable Video Super-Resolution via Alternating
Optimization [115.85296325037565]
We study a practical space-time video super-resolution (STVSR) problem which aims at generating a high-framerate high-resolution sharp video from a low-framerate blurry video.
We propose an interpretable STVSR framework by leveraging both model-based and learning-based methods.
arXiv Detail & Related papers (2022-07-21T21:34:05Z) - Learning Trajectory-Aware Transformer for Video Super-Resolution [50.49396123016185]
Video super-resolution aims to restore a sequence of high-resolution (HR) frames from their low-resolution (LR) counterparts.
Existing approaches usually align and aggregate video frames from limited adjacent frames.
We propose a novel Transformer for Video Super-Resolution (TTVSR)
arXiv Detail & Related papers (2022-04-08T03:37:39Z) - Memory-Augmented Non-Local Attention for Video Super-Resolution [61.55700315062226]
We propose a novel video super-resolution method that aims at generating high-fidelity high-resolution (HR) videos from low-resolution (LR) ones.
Previous methods predominantly leverage temporal neighbor frames to assist the super-resolution of the current frame.
In contrast, we devise a cross-frame non-local attention mechanism that allows video super-resolution without frame alignment.
arXiv Detail & Related papers (2021-08-25T05:12:14Z) - Zooming SlowMo: An Efficient One-Stage Framework for Space-Time Video
Super-Resolution [100.11355888909102]
Space-time video super-resolution aims at generating a high-resolution (HR) slow-motion video from a low-resolution (LR) and low frame rate (LFR) video sequence.
We present a one-stage space-time video super-resolution framework, which can directly reconstruct an HR slow-motion video sequence from an input LR and LFR video.
arXiv Detail & Related papers (2021-04-15T17:59:23Z) - Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video
Super-Resolution [95.26202278535543]
A simple solution is to split it into two sub-tasks: video frame (VFI) and video super-resolution (VSR)
temporalsynthesis and spatial super-resolution are intra-related in this task.
We propose a one-stage space-time video super-resolution framework, which directly synthesizes an HR slow-motion video from an LFR, LR video.
arXiv Detail & Related papers (2020-02-26T16:59:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.