A Codec Information Assisted Framework for Efficient Compressed Video
Super-Resolution
- URL: http://arxiv.org/abs/2210.08229v1
- Date: Sat, 15 Oct 2022 08:48:29 GMT
- Title: A Codec Information Assisted Framework for Efficient Compressed Video
Super-Resolution
- Authors: Hengsheng Zhang, Xueyi Zou, Jiaming Guo, Youliang Yan, Rong Xie and Li
Song
- Abstract summary: Video Super-Resolution (VSR) using recurrent neural network architecture is a promising solution due to its efficient modeling of long-range temporal dependencies.
We propose a Codec Information Assisted Framework (CIAF) to boost and accelerate recurrent VSR models for compressed videos.
- Score: 15.690562510147766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online processing of compressed videos to increase their resolutions attracts
increasing and broad attention. Video Super-Resolution (VSR) using recurrent
neural network architecture is a promising solution due to its efficient
modeling of long-range temporal dependencies. However, state-of-the-art
recurrent VSR models still require significant computation to obtain a good
performance, mainly because of the complicated motion estimation for
frame/feature alignment and the redundant processing of consecutive video
frames. In this paper, considering the characteristics of compressed videos, we
propose a Codec Information Assisted Framework (CIAF) to boost and accelerate
recurrent VSR models for compressed videos. Firstly, the framework reuses the
coded video information of Motion Vectors to model the temporal relationships
between adjacent frames. Experiments demonstrate that the models with Motion
Vector based alignment can significantly boost the performance with negligible
additional computation, even comparable to those using more complex optical
flow based alignment. Secondly, by further making use of the coded video
information of Residuals, the framework can be informed to skip the computation
on redundant pixels. Experiments demonstrate that the proposed framework can
save up to 70% of the computation without performance drop on the REDS4 test
videos encoded by H.264 when CRF is 23.
Related papers
- High-Efficiency Neural Video Compression via Hierarchical Predictive Learning [27.41398149573729]
Enhanced Deep Hierarchical Video Compression-DHVC 2.0- introduces superior compression performance and impressive complexity efficiency.
Uses hierarchical predictive coding to transform each video frame into multiscale representations.
Supports transmission-friendly progressive decoding, making it particularly advantageous for networked video applications in the presence of packet loss.
arXiv Detail & Related papers (2024-10-03T15:40:58Z) - FFNeRV: Flow-Guided Frame-Wise Neural Representations for Videos [5.958701846880935]
We propose FFNeRV, a novel method for incorporating flow information into frame-wise representations to exploit the temporal redundancy across the frames in videos.
With model compression techniques, FFNeRV outperforms widely-used standard video codecs (H.264 and HEVC) and performs on par with state-of-the-art video compression algorithms.
arXiv Detail & Related papers (2022-12-23T12:51:42Z) - VideoINR: Learning Video Implicit Neural Representation for Continuous
Space-Time Super-Resolution [75.79379734567604]
We show that Video Implicit Neural Representation (VideoINR) can be decoded to videos of arbitrary spatial resolution and frame rate.
We show that VideoINR achieves competitive performances with state-of-the-art STVSR methods on common up-sampling scales.
arXiv Detail & Related papers (2022-06-09T17:45:49Z) - Learning Trajectory-Aware Transformer for Video Super-Resolution [50.49396123016185]
Video super-resolution aims to restore a sequence of high-resolution (HR) frames from their low-resolution (LR) counterparts.
Existing approaches usually align and aggregate video frames from limited adjacent frames.
We propose a novel Transformer for Video Super-Resolution (TTVSR)
arXiv Detail & Related papers (2022-04-08T03:37:39Z) - BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation
and Alignment [90.81396836308085]
We show that by empowering recurrent framework with enhanced propagation and alignment, one can exploit video information more effectively.
Our model BasicVSR++ surpasses BasicVSR by 0.82 dB in PSNR with similar number of parameters.
BasicVSR++ generalizes well to other video restoration tasks such as compressed video enhancement.
arXiv Detail & Related papers (2021-04-27T17:58:31Z) - Learning to Compress Videos without Computing Motion [39.46212197928986]
We propose a new deep learning video compression architecture that does not require motion estimation.
Our framework exploits the regularities inherent to video motion, which we capture by using displaced frame differences as video representations.
Our experiments show that our compression model, which we call the MOtionless VIdeo Codec (MOVI-Codec), learns how to efficiently compress videos without computing motion.
arXiv Detail & Related papers (2020-09-29T15:49:25Z) - Learning for Video Compression with Recurrent Auto-Encoder and Recurrent
Probability Model [164.7489982837475]
This paper proposes a Recurrent Learned Video Compression (RLVC) approach with the Recurrent Auto-Encoder (RAE) and Recurrent Probability Model ( RPM)
The RAE employs recurrent cells in both the encoder and decoder to exploit the temporal correlation among video frames.
Our approach achieves the state-of-the-art learned video compression performance in terms of both PSNR and MS-SSIM.
arXiv Detail & Related papers (2020-06-24T08:46:33Z) - Deep Space-Time Video Upsampling Networks [47.62807427163614]
Video super-resolution (VSR) and frame (FI) are traditional computer vision problems.
We propose an end-to-end framework for the space-time video upsampling by efficiently merging VSR and FI into a joint framework.
Results show better results both quantitatively and qualitatively, while reducing the time (x7 faster) and the number of parameters (30%) compared to baselines.
arXiv Detail & Related papers (2020-04-06T07:04:21Z) - Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video
Super-Resolution [95.26202278535543]
A simple solution is to split it into two sub-tasks: video frame (VFI) and video super-resolution (VSR)
temporalsynthesis and spatial super-resolution are intra-related in this task.
We propose a one-stage space-time video super-resolution framework, which directly synthesizes an HR slow-motion video from an LFR, LR video.
arXiv Detail & Related papers (2020-02-26T16:59:48Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.