Knowledge Distillation Decision Tree for Unravelling Black-box Machine Learning Models
- URL: http://arxiv.org/abs/2206.04661v4
- Date: Fri, 04 Apr 2025 18:13:02 GMT
- Title: Knowledge Distillation Decision Tree for Unravelling Black-box Machine Learning Models
- Authors: Xuetao Lu, J. Jack Lee,
- Abstract summary: We introduce the method of knowledge distillation decision tree (KDDT)<n>KDDT enables the distillation of knowledge about the data from a black-box model into a decision tree.<n>An efficient algorithm is provided for constructing the hybrid KDDT.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models, particularly the black-box models, are widely favored for their outstanding predictive capabilities. However, they often face scrutiny and criticism due to the lack of interpretability. Paradoxically, their strong predictive capabilities may indicate a deep understanding of the underlying data, implying significant potential for interpretation. Leveraging the emerging concept of knowledge distillation, we introduce the method of knowledge distillation decision tree (KDDT). This method enables the distillation of knowledge about the data from a black-box model into a decision tree, thereby facilitating the interpretation of the black-box model. Essential attributes for a good interpretable model include simplicity, stability, and predictivity. The primary challenge of constructing interpretable tree lies in ensuring structural stability under the randomness of the training data. KDDT is developed with the theoretical foundations demonstrating that structure stability can be achieved under mild assumptions. Furthermore, we propose the hybrid KDDT to achieve both simplicity and predictivity. An efficient algorithm is provided for constructing the hybrid KDDT. Simulation studies and a real-data analysis validate the hybrid KDDT's capability to deliver accurate and reliable interpretations. KDDT is an excellent interpretable model with great potential for practical applications.
Related papers
- Towards a Theoretical Understanding of Memorization in Diffusion Models [76.85077961718875]
Diffusion probabilistic models (DPMs) are being employed as mainstream models for Generative Artificial Intelligence (GenAI)
We provide a theoretical understanding of memorization in both conditional and unconditional DPMs under the assumption of model convergence.
We propose a novel data extraction method named textbfSurrogate condItional Data Extraction (SIDE) that leverages a time-dependent classifier trained on the generated data as a surrogate condition to extract training data from unconditional DPMs.
arXiv Detail & Related papers (2024-10-03T13:17:06Z) - SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
We propose a novel method to enhance explainability with minimal accuracy loss.
We have developed novel methods for estimating nodes by leveraging AI techniques.
Our findings highlight the critical role that statistical methodologies can play in advancing explainable AI.
arXiv Detail & Related papers (2024-06-16T14:43:01Z) - Explainable AI models for predicting liquefaction-induced lateral spreading [1.6221957454728797]
Machine learning can improve lateral spreading prediction models.
The "black box" nature of machine learning models can hinder their adoption in critical decision-making.
This work highlights the value of explainable machine learning for reliable and informed decision-making.
arXiv Detail & Related papers (2024-04-24T16:25:52Z) - Towards Understanding the Robustness of Diffusion-Based Purification: A Stochastic Perspective [65.10019978876863]
Diffusion-Based Purification (DBP) has emerged as an effective defense mechanism against adversarial attacks.
In this paper, we argue that the inherentity in the DBP process is the primary driver of its robustness.
arXiv Detail & Related papers (2024-04-22T16:10:38Z) - TIE-KD: Teacher-Independent and Explainable Knowledge Distillation for
Monocular Depth Estimation [1.03590082373586]
We introduce a novel Teacher-Independent Explainable Knowledge Distillation (TIE-KD) framework that streamlines the knowledge transfer from complex teacher models to compact student networks.
The cornerstone of TIE-KD is the Depth Probability Map (DPM), an explainable feature map that interprets the teacher's output.
Extensive evaluation of the KITTI dataset indicates that TIE-KD not only outperforms conventional response-based KD methods but also demonstrates consistent efficacy across diverse teacher and student architectures.
arXiv Detail & Related papers (2024-02-22T07:17:30Z) - Leveraging Model-based Trees as Interpretable Surrogate Models for Model
Distillation [3.5437916561263694]
Surrogate models play a crucial role in retrospectively interpreting complex and powerful black box machine learning models.
This paper focuses on using model-based trees as surrogate models which partition the feature space into interpretable regions via decision rules.
Four model-based tree algorithms, namely SLIM, GUIDE, MOB, and CTree, are compared regarding their ability to generate such surrogate models.
arXiv Detail & Related papers (2023-10-04T19:06:52Z) - Probabilistic Dataset Reconstruction from Interpretable Models [8.31111379034875]
We show that optimal interpretable models are often more compact and leak less information regarding their training data than greedily-built ones.
Our results suggest that optimal interpretable models are often more compact and leak less information regarding their training data than greedily-built ones.
arXiv Detail & Related papers (2023-08-29T08:10:09Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - Optimal Interpretability-Performance Trade-off of Classification Trees
with Black-Box Reinforcement Learning [0.0]
Interpretability of AI models allows for user safety checks to build trust in these models.
Decision trees (DTs) provide a global view on the learned model and clearly outlines the role of the features that are critical to classify a given data.
To learn compact trees, a Reinforcement Learning framework has been recently proposed to explore the space of DTs.
arXiv Detail & Related papers (2023-04-11T09:43:23Z) - Estimate Deformation Capacity of Non-Ductile RC Shear Walls using
Explainable Boosting Machine [0.0]
This study aims to develop a fully explainable machine learning model to predict the deformation capacity of non-ductile reinforced concrete shear walls.
The proposed Explainable Boosting Machines (EBM)-based model is an interpretable, robust, naturally explainable glass-box model, yet provides high accuracy comparable to its black-box counterparts.
arXiv Detail & Related papers (2023-01-11T09:20:29Z) - Optimal Decision Diagrams for Classification [68.72078059880018]
We study the training of optimal decision diagrams from a mathematical programming perspective.
We introduce a novel mixed-integer linear programming model for training.
We show how this model can be easily extended for fairness, parsimony, and stability notions.
arXiv Detail & Related papers (2022-05-28T18:31:23Z) - Prompting to Distill: Boosting Data-Free Knowledge Distillation via
Reinforced Prompt [52.6946016535059]
Data-free knowledge distillation (DFKD) conducts knowledge distillation via eliminating the dependence of original training data.
We propose a prompt-based method, termed as PromptDFD, that allows us to take advantage of learned language priors.
As shown in our experiments, the proposed method substantially improves the synthesis quality and achieves considerable improvements on distillation performance.
arXiv Detail & Related papers (2022-05-16T08:56:53Z) - Feeding What You Need by Understanding What You Learned [54.400455868448695]
Machine Reading (MRC) reveals the ability to understand a given text passage and answer questions based on it.
Existing research works in MRC rely heavily on large-size models and corpus to improve the performance evaluated by metrics such as Exact Match.
We argue that a deep understanding of model capabilities and data properties can help us feed a model with appropriate training data.
arXiv Detail & Related papers (2022-03-05T14:15:59Z) - Provably Robust Model-Centric Explanations for Critical Decision-Making [14.367217955827002]
We show that data-centric methods may yield brittle explanations of limited practical utility.
The model-centric framework, however, can offer actionable insights into risks of using AI models in practice.
arXiv Detail & Related papers (2021-10-26T18:05:49Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
Online Self-Acquired Knowledge Distillation (OSAKD) is proposed, aiming to improve the performance of any deep neural model in an online manner.
We utilize k-nn non-parametric density estimation technique for estimating the unknown probability distributions of the data samples in the output feature space.
arXiv Detail & Related papers (2021-08-26T14:01:04Z) - MixKD: Towards Efficient Distillation of Large-scale Language Models [129.73786264834894]
We propose MixKD, a data-agnostic distillation framework, to endow the resulting model with stronger generalization ability.
We prove from a theoretical perspective that under reasonable conditions MixKD gives rise to a smaller gap between the error and the empirical error.
Experiments under a limited-data setting and ablation studies further demonstrate the advantages of the proposed approach.
arXiv Detail & Related papers (2020-11-01T18:47:51Z) - Rectified Decision Trees: Exploring the Landscape of Interpretable and
Effective Machine Learning [66.01622034708319]
We propose a knowledge distillation based decision trees extension, dubbed rectified decision trees (ReDT)
We extend the splitting criteria and the ending condition of the standard decision trees, which allows training with soft labels.
We then train the ReDT based on the soft label distilled from a well-trained teacher model through a novel jackknife-based method.
arXiv Detail & Related papers (2020-08-21T10:45:25Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z) - Explainable Deep Modeling of Tabular Data using TableGraphNet [1.376408511310322]
We propose a new architecture that produces explainable predictions in the form of additive feature attributions.
We show that our explainable model attains the same level of performance as black box models.
arXiv Detail & Related papers (2020-02-12T20:02:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.