論文の概要: Muffliato: Peer-to-Peer Privacy Amplification for Decentralized
Optimization and Averaging
- arxiv url: http://arxiv.org/abs/2206.05091v1
- Date: Fri, 10 Jun 2022 13:32:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-13 19:41:49.523556
- Title: Muffliato: Peer-to-Peer Privacy Amplification for Decentralized
Optimization and Averaging
- Title(参考訳): muffliato: 分散最適化と平均化のためのピアツーピアプライバシ増幅
- Authors: Edwige Cyffers, Mathieu Even, Aur\'elien Bellet, Laurent Massouli\'e
- Abstract要約: ローカルディファレンシャルプライバシ(LDP)の緩和であるペアワイズネットワークディファレンシャルプライバシを導入する。
我々は、局所勾配降下ステップとゴシップ平均化を交互に交互に行う、微分プライベートな分散最適化アルゴリズムを導出する。
我々のアルゴリズムは,グラフ内のノード間距離の関数として,プライバシー保証を増幅することを示す。
- 参考スコア(独自算出の注目度): 2.294014185517203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized optimization is increasingly popular in machine learning for
its scalability and efficiency. Intuitively, it should also provide better
privacy guarantees, as nodes only observe the messages sent by their neighbors
in the network graph. But formalizing and quantifying this gain is challenging:
existing results are typically limited to Local Differential Privacy (LDP)
guarantees that overlook the advantages of decentralization. In this work, we
introduce pairwise network differential privacy, a relaxation of LDP that
captures the fact that the privacy leakage from a node $u$ to a node $v$ may
depend on their relative position in the graph. We then analyze the combination
of local noise injection with (simple or randomized) gossip averaging protocols
on fixed and random communication graphs. We also derive a differentially
private decentralized optimization algorithm that alternates between local
gradient descent steps and gossip averaging. Our results show that our
algorithms amplify privacy guarantees as a function of the distance between
nodes in the graph, matching the privacy-utility trade-off of the trusted
curator, up to factors that explicitly depend on the graph topology. Finally,
we illustrate our privacy gains with experiments on synthetic and real-world
datasets.
- Abstract(参考訳): 分散最適化は、スケーラビリティと効率性のために機械学習でますます人気がある。
直感的には、ノードはネットワークグラフ内の隣人が送信するメッセージのみを監視するため、より優れたプライバシー保証を提供する必要がある。
しかし、この利益を形式化し、定量化するのは難しい。既存の結果は、分散化の利点を見落としているローカル微分プライバシー(LDP)に制限される。
本研究では、ノード$u$からノード$v$へのプライバシリークが、グラフ内の相対的な位置に依存する可能性があるという事実を捉えた、LDPの緩和であるペアワイズネットワーク差分プライバシーを導入する。
次に,ローカルノイズインジェクションと(単純あるいはランダムに)ゴシップ平均化プロトコルの組み合わせを,固定およびランダムな通信グラフ上で解析する。
また,局所勾配降下ステップとゴシップ平均化を交互に交互に行う,偏分散最適化アルゴリズムも導出する。
我々のアルゴリズムは,グラフのノード間距離の関数としてプライバシ保証を増幅し,信頼されたキュレータのプライバシユーティリティトレードオフをグラフトポロジに明示的に依存する要因にマッチさせることを示した。
最後に、合成および実世界のデータセットに関する実験によって、プライバシの向上を示す。
関連論文リスト
- Privacy Preserving Semi-Decentralized Mean Estimation over Intermittently-Connected Networks [59.43433767253956]
信頼できない無線ネットワークの異なるノードに分散するベクトルの平均をプライベートに推定する問題を考える。
半分散的なセットアップでは、ノードは隣人と協力してローカルコンセンサスを計算し、中央サーバにリレーする。
ノード間のデータ共有による協調中継とプライバシー漏洩のトレードオフについて検討する。
論文 参考訳(メタデータ) (2024-06-06T06:12:15Z) - Differentially Private Decentralized Learning with Random Walks [15.862152253607496]
ランダムウォークアルゴリズムを用いて分散学習のプライバシー保証を特徴付ける。そこでは、あるノードから別のノードへ通信グラフのエッジに沿って移動することで、モデルを更新する。
その結果、ランダムウォークアルゴリズムは、互いに近接するノードに対するゴシップアルゴリズムよりも、より優れたプライバシ保証をもたらす傾向があることが明らかとなった。
論文 参考訳(メタデータ) (2024-02-12T08:16:58Z) - Share Your Representation Only: Guaranteed Improvement of the
Privacy-Utility Tradeoff in Federated Learning [47.042811490685324]
この情報漏洩のリスクを減らし、最先端の差分プライベートアルゴリズムを使っても、無料ではない。
本稿では,異なるプライバシ保証を持つフェデレーションモデルにおいて,様々な当事者が協調的に洗練する表現学習の目的について考察する。
同じ小さなプライバシ予算の下で、以前の作業よりも大幅にパフォーマンスが向上するのを観察する。
論文 参考訳(メタデータ) (2023-09-11T14:46:55Z) - Blink: Link Local Differential Privacy in Graph Neural Networks via
Bayesian Estimation [79.64626707978418]
分散ノード上でのリンクローカル差分プライバシーを用いてグラフニューラルネットワークをトレーニングする。
当社のアプローチでは、グラフトポロジをより悪用するために、グラフのリンクと学位を別々に、プライバシ予算に費やしています。
当社のアプローチは、様々なプライバシー予算の下での精度において、既存の手法よりも優れています。
論文 参考訳(メタデータ) (2023-09-06T17:53:31Z) - Differentially Private Graph Neural Network with Importance-Grained
Noise Adaption [6.319864669924721]
ノードが個人や機密情報を表現している場合、グラフプライバシを保護するために、差分プライバシを持つグラフニューラルネットワーク(GNN)が提案されている。
ノードがプライベートにしておく必要があるが、GNNのトレーニングには不可欠である個人データを含む、重要度の高いプライバシの問題について検討する。
NAP-GNNはノード情報を保護するための適応差分プライバシーに基づくプライバシー保証付きノード単位のプライバシ保存GNNアルゴリズムである。
論文 参考訳(メタデータ) (2023-08-09T13:18:41Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
しかし、スパースデータセットを共有するという点では、差分プライバシーがプライバシのゴールドスタンダードとして浮上している。
本研究では、スムーズな$k$匿名性(スムーズな$k$匿名性)と、スムーズな$k$匿名性(スムーズな$k$匿名性)を提供する単純な大規模アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-07-13T17:09:25Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - GAP: Differentially Private Graph Neural Networks with Aggregation
Perturbation [19.247325210343035]
グラフニューラルネットワーク(GNN)は、ノード表現を学習するグラフデータ用に設計された強力なモデルである。
近年の研究では、グラフデータが機密情報を含む場合、GNNは重大なプライバシー上の懸念を生じさせることが示されている。
我々は,ノードとエッジのプライバシを保護する,差分的にプライベートなGNNであるGAPを提案する。
論文 参考訳(メタデータ) (2022-03-02T08:58:07Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z) - Locally Private Graph Neural Networks [12.473486843211573]
ノードデータプライバシ(ノードデータプライバシ)の問題として,グラフノードが機密性の高いデータをプライベートに保持する可能性について検討する。
我々は、正式なプライバシー保証を備えたプライバシー保護アーキテクチャに依存しないGNN学習アルゴリズムを開発した。
実世界のデータセット上で行った実験は、我々の手法が低プライバシー損失で満足度の高い精度を維持することができることを示した。
論文 参考訳(メタデータ) (2020-06-09T22:36:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。