Boosting unstable particles
- URL: http://arxiv.org/abs/2206.05125v2
- Date: Thu, 20 Oct 2022 21:42:21 GMT
- Title: Boosting unstable particles
- Authors: L. Gavassino and F. Giacosa
- Abstract summary: We show that, when a wavefunction is boosted, its tails travel one to the past and the other to the future.
The surprising implication is that, in a quantum world, decay probabilities can never be Lorentz-invariant.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In relativity, there is no absolute notion of simultaneity, because two
clocks that are in different places can always be desynchronized by a Lorentz
boost. Here, we explore the implications of this effect for the quantum theory
of unstable particles. We show that, when a wavefunction is boosted, its tails
travel one to the past and the other to the future. As a consequence, in the
new frame of reference, the particle is in a quantum superposition "decayed +
non decayed", where the property "decayed-ness" is entangled with the position.
Since a particle cannot be localised in a region smaller than the Compton
wavelength, there is a non-zero lower bound on this effect, which is
fundamental in nature. The surprising implication is that, in a quantum world,
decay probabilities can never be Lorentz-invariant. We show that this insight
was the missing ingredient to reconcile the seemingly conflicting views about
time dilation in relativistic quantum mechanics and quantum field theory.
Related papers
- Apparent violation of causality in relativistic quantum mechanics [0.0]
In relativistic theories the principle of microscopic causality states that information cannot travel faster than the speed of light''
We consider here the wave functions of massless and massive particles.
arXiv Detail & Related papers (2024-04-14T09:52:56Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Relativistic time dilation from a quantum mechanism [0.0]
We show that Lorentz transformations are obtained by a quantum mechanism.
We postulate this mechanism as the source of the phenomena of Special Relativity.
In this theory, the fundamental limit of the speed of light imposes a transparency condition for faster-than-light particles.
arXiv Detail & Related papers (2023-07-09T19:37:00Z) - Time-System Entanglement and Special Relativity [0.0]
Page-Wootters mechanism of quantum time is a promising starting point.
We study how this time-system entanglement depends on the rapidity of the Lorentz boost.
arXiv Detail & Related papers (2022-12-27T03:09:58Z) - Comment on "Does the weak trace show the past of a quantum particle?" [0.0]
We argue that null weak values of the spatial projectors are inadequate to infer the presence of a quantum particle at an intermediate time between preparation and detection.
This conclusion relies on two arguments - (i) the role of the disturbance induced by a weak measurement, and (ii) classical-like features like continuous paths that must purportedly be associated with a quantum particle presence.
arXiv Detail & Related papers (2022-02-23T15:47:03Z) - Is negative kinetic energy meta-stable? [62.997667081978825]
We explore the possibility that theories with negative kinetic energy (ghosts) can be meta-stable up to cosmologically long times.
In classical mechanics, ghosts undergo spontaneous lockdown rather than run-away if weakly-coupled and non-resonant.
In quantum mechanics this leads to meta-stability similar to vacuum decay.
arXiv Detail & Related papers (2020-07-10T18:00:03Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z) - Entropic uncertainty relation in Garfinkle-Horowitz-Strominger dilation
black hole [0.0]
Heisenberg's uncertainty principle is a fundamental element in quantum mechanics.
In quantum information theory, the uncertainty principle can be expressed using entropic measures.
We consider a model in which the memory particle is located near the event horizon outside the black hole.
arXiv Detail & Related papers (2020-06-05T11:53:08Z) - Quantum time dilation: A new test of relativistic quantum theory [91.3755431537592]
A novel quantum time dilation effect is shown to arise when a clock moves in a quantum superposition of two relativistic velocities.
This effect is argued to be measurable using existing atomic interferometry techniques, potentially offering a new test of relativistic quantum theory.
arXiv Detail & Related papers (2020-04-22T19:26:53Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.