A heuristic method for data allocation and task scheduling on
heterogeneous multiprocessor systems under memory constraints
- URL: http://arxiv.org/abs/2206.05268v1
- Date: Mon, 9 May 2022 10:46:08 GMT
- Title: A heuristic method for data allocation and task scheduling on
heterogeneous multiprocessor systems under memory constraints
- Authors: Junwen Ding, Liangcai Song, Siyuan Li, Chen Wu, Ronghua He, Zhouxing
Su, Zhipeng L\"u
- Abstract summary: This paper focuses on the data allocation and task scheduling problem under memory constraints.
We propose a tabu search algorithm (TS) which combines several distinguished features.
Experimental results show that the the proposed TS algorithm can obtain relatively high-quality solutions in a reasonable computational time.
- Score: 14.681986126866452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computing workflows in heterogeneous multiprocessor systems are frequently
modeled as directed acyclic graphs of tasks and data blocks, which represent
computational modules and their dependencies in the form of data produced by a
task and used by others. However, for some workflows, such as the task schedule
in a digital signal processor may run out of memory by exposing too much
parallelism. This paper focuses on the data allocation and task scheduling
problem under memory constraints, and concentrates on shared memory platforms.
We first propose an integer linear programming model to formulate the problem.
Then we consider the problem as an extended flexible job shop scheduling
problem, while trying to minimize the critical path of the graph. To solve this
problem, we propose a tabu search algorithm (TS) which combines several
distinguished features such as a greedy initial solution construction method
and a mixed neighborhood evaluation strategy based on exact evaluation and
approximate evaluation methods. Experimental results on randomly generated
instances show that the the proposed TS algorithm can obtain relatively
high-quality solutions in a reasonable computational time. In specific, the
tabu search method averagely improves the makespan by 5-25\% compared to the
classical load balancing algorithm that are widely used in the literature.
Besides, some key features of TS are also analyzed to identify its success
factors.
Related papers
- A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - An End-to-End Reinforcement Learning Approach for Job-Shop Scheduling
Problems Based on Constraint Programming [5.070542698701157]
This paper proposes a novel end-to-end approach to solving scheduling problems by means of CP and Reinforcement Learning (RL)
Our approach leverages existing CP solvers to train an agent learning a Priority Dispatching Rule (PDR) that generalizes well to large instances, even from separate datasets.
arXiv Detail & Related papers (2023-06-09T08:24:56Z) - Numerical Methods for Convex Multistage Stochastic Optimization [86.45244607927732]
We focus on optimisation programming (SP), Optimal Control (SOC) and Decision Processes (MDP)
Recent progress in solving convex multistage Markov problems is based on cutting planes approximations of the cost-to-go functions of dynamic programming equations.
Cutting plane type methods can handle multistage problems with a large number of stages, but a relatively smaller number of state (decision) variables.
arXiv Detail & Related papers (2023-03-28T01:30:40Z) - Scalable Batch Acquisition for Deep Bayesian Active Learning [70.68403899432198]
In deep active learning, it is important to choose multiple examples to markup at each step.
Existing solutions to this problem, such as BatchBALD, have significant limitations in selecting a large number of examples.
We present the Large BatchBALD algorithm, which aims to achieve comparable quality while being more computationally efficient.
arXiv Detail & Related papers (2023-01-13T11:45:17Z) - Accelerating ERM for data-driven algorithm design using output-sensitive techniques [26.32088674030797]
We study techniques to develop efficient learning algorithms for data-driven algorithm design.
Our approach involves two novel ingredients -- an output-sensitive algorithm for enumerating polytopes induced by a set of hyperplanes.
We illustrate our techniques by giving algorithms for pricing problems, linkage-based clustering and dynamic-programming based sequence alignment.
arXiv Detail & Related papers (2022-04-07T17:27:18Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Learning to Schedule DAG Tasks [7.577417675452624]
We present a novel learning-based approach to scheduling directed acyclic graphs (DAGs)
The algorithm employs a reinforcement learning agent to iteratively add edges directed to the DAG.
Our approach can be easily applied to any existing scheduling algorithms.
arXiv Detail & Related papers (2021-03-05T01:10:24Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
We consider the problem of learning the optimal policy for infinite-horizon Markov decision processes (MDPs)
Some variant of Mirror Descent is proposed for convex programming problems with Lipschitz-continuous functionals.
We analyze this algorithm in a general case and obtain an estimate of the convergence rate that does not accumulate errors during the operation of the method.
arXiv Detail & Related papers (2021-02-27T19:28:39Z) - Data-driven Algorithm Design [21.39493074700162]
Data driven algorithm design is an important aspect of modern data science and algorithm design.
A small tweak to the parameters can cause a cascade of changes in the algorithm's behavior.
We provide strong computational and statistical performance guarantees for batch and online scenarios.
arXiv Detail & Related papers (2020-11-14T00:51:57Z) - Learning the Step-size Policy for the Limited-Memory
Broyden-Fletcher-Goldfarb-Shanno Algorithm [3.7470451129384825]
We consider the problem of how to learn a step-size policy for the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm.
We propose a neural network architecture with local information of the current gradient as the input.
The step-length policy is learned from data of similar optimization problems, avoids additional evaluations of the objective function, and guarantees that the output step remains inside a pre-defined interval.
arXiv Detail & Related papers (2020-10-03T09:34:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.