論文の概要: ProActive: Self-Attentive Temporal Point Process Flows for Activity
Sequences
- arxiv url: http://arxiv.org/abs/2206.05291v1
- Date: Fri, 10 Jun 2022 16:30:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-19 15:44:54.219349
- Title: ProActive: Self-Attentive Temporal Point Process Flows for Activity
Sequences
- Title(参考訳): ProActive: アクティビティシーケンスのための自己注意的一時的プロセスフロー
- Authors: Vinayak Gupta and Srikanta Bedathur
- Abstract要約: ProActiveは、アクティビティシーケンス内のアクションの連続的な時間分布をモデル化するためのフレームワークである。
次のアクション予測、シーケンスゴール予測、エンドツーエンドシーケンス生成に対処する。
- 参考スコア(独自算出の注目度): 9.571588145356277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Any human activity can be represented as a temporal sequence of actions
performed to achieve a certain goal. Unlike machine-made time series, these
action sequences are highly disparate as the time taken to finish a similar
action might vary between different persons. Therefore, understanding the
dynamics of these sequences is essential for many downstream tasks such as
activity length prediction, goal prediction, etc. Existing neural approaches
that model an activity sequence are either limited to visual data or are task
specific, i.e., limited to next action or goal prediction. In this paper, we
present ProActive, a neural marked temporal point process (MTPP) framework for
modeling the continuous-time distribution of actions in an activity sequence
while simultaneously addressing three high-impact problems -- next action
prediction, sequence-goal prediction, and end-to-end sequence generation.
Specifically, we utilize a self-attention module with temporal normalizing
flows to model the influence and the inter-arrival times between actions in a
sequence. Moreover, for time-sensitive prediction, we perform an early
detection of sequence goal via a constrained margin-based optimization
procedure. This in-turn allows ProActive to predict the sequence goal using a
limited number of actions. Extensive experiments on sequences derived from
three activity recognition datasets show the significant accuracy boost of
ProActive over the state-of-the-art in terms of action and goal prediction, and
the first-ever application of end-to-end action sequence generation.
- Abstract(参考訳): 人間の活動は、ある目標を達成するために行われた行動の時間的シーケンスとして表すことができる。
マシンメイドの時系列とは異なり、これらのアクションシーケンスは、同様のアクションを終えるのにかかる時間が異なるため、非常に異なる。
したがって、これらのシーケンスのダイナミクスを理解することは、アクティビティ長予測やゴール予測など、多くの下流タスクに不可欠である。
活動シーケンスをモデル化する既存のニューラルネットワークアプローチは、視覚データに限られるか、タスク固有のもの、すなわち次のアクションや目標予測に限られている。
本稿では、次のアクション予測、シーケンスゴール予測、エンドツーエンドのシーケンス生成という3つの高インパクト問題に同時に対処しながら、アクティビティシーケンス内のアクションの連続的な時間分布をモデル化する、ニューラルネットワークマーク時間点プロセス(MTPP)フレームワークであるProActiveを提案する。
具体的には、時間的正規化フローを持つ自己注意モジュールを用いて、シーケンス内のアクション間の影響と時間間隔をモデル化する。
さらに,時間に敏感な予測のために,制約付きマージンに基づく最適化手法を用いてシーケンスゴールの早期検出を行う。
このインターンにより、プロアクティブは限られた数のアクションを使用してシーケンスゴールを予測することができる。
3つのアクティビティ認識データセットから得られたシーケンスに関する広範囲な実験は、アクションとゴール予測の観点からの最先端技術に対するProActiveの大幅な精度向上と、エンドツーエンドのアクションシーケンス生成の最初の応用を示している。
関連論文リスト
- Meta-Learning for Neural Network-based Temporal Point Processes [36.31950058651308]
ポイントプロセスは、人間の活動に関連する事象を予測するために広く使われている。
最近の高性能ポイントプロセスモデルでは、長期間にわたって収集された十分な数のイベントを入力する必要がある。
短周期の事象の周期性を考慮した予測のためのメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2024-01-29T02:42:22Z) - Activity Grammars for Temporal Action Segmentation [71.03141719666972]
時間的アクションセグメンテーションは、トリミングされていないアクティビティビデオを一連のアクションセグメンテーションに変換することを目的としている。
本稿では,時間的行動セグメンテーションのための神経予測を導くための効果的な活動文法を提案する。
実験の結果,提案手法は時間的動作のセグメンテーションを性能と解釈性の両方の観点から著しく改善することが示された。
論文 参考訳(メタデータ) (2023-12-07T12:45:33Z) - Tapestry of Time and Actions: Modeling Human Activity Sequences using
Temporal Point Process Flows [9.571588145356277]
本稿では,アクティビティシーケンス中のアクションの連続的な分布をモデル化するフレームワークであるProActiveを提案する。
ProActiveは次のアクション予測、シーケンスゴール予測、エンドツーエンドシーケンス生成という3つの高影響問題に対処する。
論文 参考訳(メタデータ) (2023-07-13T19:17:54Z) - Finding Islands of Predictability in Action Forecasting [7.215559809521136]
将来のアクションシーケンスは1つの抽象化レベルではなく、変数でより正確にモデル化されていることを示す。
本稿では,ベイズニューラルネットワークと階層的畳み込みセグメンテーションモデルを組み合わせて,将来の行動を正確に予測し,抽象化レベルを最適に選択する手法を提案する。
論文 参考訳(メタデータ) (2022-10-13T21:01:16Z) - Learning Sequence Representations by Non-local Recurrent Neural Memory [61.65105481899744]
教師付きシーケンス表現学習のためのNon-local Recurrent Neural Memory (NRNM)を提案する。
我々のモデルは長距離依存を捉えることができ、潜伏した高レベル特徴を我々のモデルで抽出することができる。
我々のモデルは、これらのシーケンスアプリケーションごとに特別に設計された他の最先端の手法と比較して好意的に比較する。
論文 参考訳(メタデータ) (2022-07-20T07:26:15Z) - The Wisdom of Crowds: Temporal Progressive Attention for Early Action
Prediction [104.628661890361]
初期のアクション予測は、部分的に観察されたビデオから進行中のアクションを推測する。
本稿では,細粒度から粗粒度へのプログレッシブサンプリングにより,行動の進化を捉えたボトルネックに基づくアテンションモデルを提案する。
論文 参考訳(メタデータ) (2022-04-28T08:21:09Z) - Sequence-to-Sequence Modeling for Action Identification at High Temporal
Resolution [9.902223920743872]
高時間分解能でラベル付けされた微妙な短時間動作を含む新しい行動認識ベンチマークを導入する。
セグメント化に基づく現在の最先端モデルでは,これらのデータに適用した場合,ノイズの予測が可能であることを示す。
本稿では,音声認識技術に触発された高精度な行動識別手法を提案する。
論文 参考訳(メタデータ) (2021-11-03T21:06:36Z) - A Prospective Study on Sequence-Driven Temporal Sampling and Ego-Motion
Compensation for Action Recognition in the EPIC-Kitchens Dataset [68.8204255655161]
行動認識はコンピュータビジョンにおける最上位の研究分野の一つである。
エゴモーション記録シーケンスは重要な関連性を持つようになった。
提案手法は,このエゴモーションやカメラの動きを推定して対処することを目的としている。
論文 参考訳(メタデータ) (2020-08-26T14:44:45Z) - Learning to Abstract and Predict Human Actions [60.85905430007731]
ビデオにおける人間の活動の階層構造をモデル化し,行動予測におけるそのような構造の効果を実証する。
イベントの部分的階層を観察し、その構造を複数の抽象化レベルで将来の予測にロールアウトすることで、人間の活動の構造を学習できる階層型ニューラルネットワークであるHierarchical-Refresher-Anticipatorを提案する。
論文 参考訳(メタデータ) (2020-08-20T23:57:58Z) - MS-TCN++: Multi-Stage Temporal Convolutional Network for Action
Segmentation [87.16030562892537]
本稿では,時間的行動分割タスクのための多段階アーキテクチャを提案する。
第1段階は、次の段階によって洗練される初期予測を生成する。
我々のモデルは3つのデータセットで最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-16T14:50:47Z) - TTPP: Temporal Transformer with Progressive Prediction for Efficient
Action Anticipation [46.28067541184604]
ビデオアクション予測は、観察されたフレームから将来のアクションカテゴリを予測することを目的としている。
現在の最先端のアプローチは主に、履歴情報を隠された状態にエンコードするために、リカレントニューラルネットワークを利用する。
本稿では,プログレッシブ予測フレームワークを用いた簡易かつ効率的な時間変換器を提案する。
論文 参考訳(メタデータ) (2020-03-07T07:59:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。