Anchor-Changing Regularized Natural Policy Gradient for Multi-Objective
Reinforcement Learning
- URL: http://arxiv.org/abs/2206.05357v1
- Date: Fri, 10 Jun 2022 21:09:44 GMT
- Title: Anchor-Changing Regularized Natural Policy Gradient for Multi-Objective
Reinforcement Learning
- Authors: Ruida Zhou, Tao Liu, Dileep Kalathil, P. R. Kumar, Chao Tian
- Abstract summary: We study policy optimization for Markov decision processes (MDPs) with multiple reward value functions.
We propose an Anchor-changing Regularized Natural Policy Gradient framework, which can incorporate ideas from well-performing first-order methods.
- Score: 17.916366827429034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study policy optimization for Markov decision processes (MDPs) with
multiple reward value functions, which are to be jointly optimized according to
given criteria such as proportional fairness (smooth concave scalarization),
hard constraints (constrained MDP), and max-min trade-off. We propose an
Anchor-changing Regularized Natural Policy Gradient (ARNPG) framework, which
can systematically incorporate ideas from well-performing first-order methods
into the design of policy optimization algorithms for multi-objective MDP
problems. Theoretically, the designed algorithms based on the ARNPG framework
achieve $\tilde{O}(1/T)$ global convergence with exact gradients. Empirically,
the ARNPG-guided algorithms also demonstrate superior performance compared to
some existing policy gradient-based approaches in both exact gradients and
sample-based scenarios.
Related papers
- Landscape of Policy Optimization for Finite Horizon MDPs with General State and Action [10.219627570276689]
We develop a framework for a class of Markov Decision Processes with general state and spaces.
We show that gradient methods converge to the globally optimal policy with a nonasymptomatic condition.
Our result establishes first complexity for multi-period inventory systems.
arXiv Detail & Related papers (2024-09-25T17:56:02Z) - Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
We develop a deterministic policy gradient primal-dual method to find an optimal deterministic policy with non-asymptotic convergence.
We prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair.
To the best of our knowledge, this appears to be the first work that proposes a deterministic policy search method for continuous-space constrained MDPs.
arXiv Detail & Related papers (2024-08-19T14:11:04Z) - Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-ite convergence guarantees under (weak) gradient domination assumptions.
We numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines.
arXiv Detail & Related papers (2024-07-15T14:54:57Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
We study the problem of computing an optimal policy of an infinite-horizon discounted Markov decision process (constrained MDP)
We develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy.
To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs.
arXiv Detail & Related papers (2023-06-20T17:27:31Z) - Policy Gradient in Robust MDPs with Global Convergence Guarantee [13.40471012593073]
Robust Markov decision processes (RMDPs) provide a promising framework for computing reliable policies in the face of model errors.
This paper proposes a new Double-Loop Robust Policy Gradient (DRPG), the first generic policy gradient method for RMDPs.
In contrast with prior robust policy gradient algorithms, DRPG monotonically reduces approximation errors to guarantee convergence to a globally optimal policy.
arXiv Detail & Related papers (2022-12-20T17:14:14Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Bregman Gradient Policy Optimization [97.73041344738117]
We design a Bregman gradient policy optimization for reinforcement learning based on Bregman divergences and momentum techniques.
VR-BGPO reaches the best complexity $tilde(epsilon-3)$ for finding an $epsilon$stationary point only requiring one trajectory at each iteration.
arXiv Detail & Related papers (2021-06-23T01:08:54Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (REPS) has demonstrated successful policy learning on a number of simulated and real-world robotic domains.
There exist no guarantees on REPS's performance when using gradient-based solvers.
We introduce a technique that uses emphgenerative access to the underlying decision process to compute parameter updates that maintain favorable convergence to the optimal regularized policy.
arXiv Detail & Related papers (2021-03-17T16:22:59Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
The softmax policy gradient (PG) method is arguably one of the de facto implementations of policy optimization in modern reinforcement learning.
We demonstrate that softmax PG methods can take exponential time -- in terms of $mathcalS|$ and $frac11-gamma$ -- to converge.
arXiv Detail & Related papers (2021-02-22T18:56:26Z) - Causal Policy Gradients [6.123324869194195]
Causal policy gradients (CPGs) provide a common framework for analysing key state-of-the-art algorithms.
CPGs are shown to generalise traditional policy gradients, and yield a principled way of incorporating prior knowledge of a problem domain's generative processes.
arXiv Detail & Related papers (2021-02-20T14:51:12Z) - Fast Global Convergence of Natural Policy Gradient Methods with Entropy
Regularization [44.24881971917951]
Natural policy gradient (NPG) methods are among the most widely used policy optimization algorithms.
We develop convergence guarantees for entropy-regularized NPG methods under softmax parameterization.
Our results accommodate a wide range of learning rates, and shed light upon the role of entropy regularization in enabling fast convergence.
arXiv Detail & Related papers (2020-07-13T17:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.