Coherence interpretation of the noninterfering Sagnac-based quantum
correlation
- URL: http://arxiv.org/abs/2206.05358v5
- Date: Fri, 5 May 2023 04:07:07 GMT
- Title: Coherence interpretation of the noninterfering Sagnac-based quantum
correlation
- Authors: Byoung S. Ham
- Abstract summary: Bell inequality violation is a quantitative measurement tool for quantum entanglement.
Here, the role of coincidence detection is coherently investigated for the nonlocal correlation in a simple polarization-basis selective non-interferometric system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bell inequality violation is a quantitative measurement tool for quantum
entanglement. Quantum entanglement is the heart of quantum information science,
in which the resulting nonlocal correlation between remotely separated photons
shows a unique property of quantum mechanics. Here, the role of coincidence
detection is coherently investigated for the nonlocal correlation in a simple
polarization-basis selective non-interferometric system using entangled photon
pairs (Phys. Rev. A 73, 012316 (2006)). The resulting nonlocal quantum feature
between two independent local polarizers is coherently derived for the
joint-parameter relation of the inseparable intensity product. The resulting
coherence solution based on the wave nature of quantum mechanics is thus
understood as a deterministic process via coincidence detection-caused
measurement modification.
Related papers
- Coherence analysis of local randomness and nonlocal correlation through polarization-basis projections of entangled photon pairs [0.0]
Polarization-entangled photon pairs generated from second-order nonlinear optical media have been extensively studied for both fundamental research and potential applications of quantum information.
This paper presents a coherence analysis of these established quantum phenomena with polarization control of the paired photons and their projection measurements.
arXiv Detail & Related papers (2024-09-28T03:54:44Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Measuring the Evolution of Entanglement in Compton Scattering [101.11630543545151]
The behavior of quantum entanglement during scattering is identical to the behavior of initially classically correlated photons up to a constant factor equal to two.
Our dedicated experiment with photons confirms these results and explains the "Puzzle of Decoherence" observed recently.
arXiv Detail & Related papers (2024-06-20T14:21:23Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Coherently excited nonlocal quantum features using
polarization-frequency correlation between quantum erasers [0.0]
Photon indistinguishability is an essential concept to understanding mysterious quantum features from the viewpoint of the wave-particle duality in quantum mechanics.
Here, a pure coherence approach is applied for the nonlocal correlation based on the polarization-frequency correlation of Poisson-distributed coherent photon pairs.
arXiv Detail & Related papers (2023-04-08T13:38:24Z) - Coherently induced quantum correlation in a delayed-choice scheme [0.0]
Quantum entanglement is a unique quantum feature that cannot be obtained by classical physics.
Here, a coherence manipulation is presented to excite polarization-path correlation using Poisson-distributed coherent photons.
As a result, the nonlocal quantum feature is now coherently understood in a deterministic way.
arXiv Detail & Related papers (2023-03-27T09:53:42Z) - Macroscopic quantum correlation in a delayed-choice quantum eraser
scheme [0.0]
Coherence interpretation has been conducted for the delayed-choice quantum eraser using coherent photon pairs.
Quantum entanglement is known as a unique feature of quantum mechanics, which cannot be obtained from classical physics.
arXiv Detail & Related papers (2022-11-20T01:25:43Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Coherently excited nonlocal quantum features using
polarization-frequency correlation via a quantum eraser [0.0]
Indistinguishability is an essential concept to understanding mysterious quantum features in the view point of the wave-particle duality of quantum mechanics.
Here, a pure coherence approach is applied to the nonlocal correlation using coherent photons manipulated for polarization-frequency correlation.
The mysterious quantum feature of nonlocal correlation is now coherently understood and may open the door to macroscopic quantum information processing.
arXiv Detail & Related papers (2022-06-09T03:43:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.