Semi-Supervised Hierarchical Graph Classification
- URL: http://arxiv.org/abs/2206.05416v1
- Date: Sat, 11 Jun 2022 04:05:29 GMT
- Title: Semi-Supervised Hierarchical Graph Classification
- Authors: Jia Li, Yongfeng Huang, Heng Chang, Yu Rong
- Abstract summary: We study the node classification problem in the hierarchical graph where a 'node' is a graph instance.
We propose the Hierarchical Graph Mutual Information (HGMI) and present a way to compute HGMI with theoretical guarantee.
We demonstrate the effectiveness of this hierarchical graph modeling and the proposed SEAL-CI method on text and social network data.
- Score: 54.25165160435073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Node classification and graph classification are two graph learning problems
that predict the class label of a node and the class label of a graph
respectively. A node of a graph usually represents a real-world entity, e.g., a
user in a social network, or a document in a document citation network. In this
work, we consider a more challenging but practically useful setting, in which a
node itself is a graph instance. This leads to a hierarchical graph perspective
which arises in many domains such as social network, biological network and
document collection. We study the node classification problem in the
hierarchical graph where a 'node' is a graph instance. As labels are usually
limited, we design a novel semi-supervised solution named SEAL-CI. SEAL-CI
adopts an iterative framework that takes turns to update two modules, one
working at the graph instance level and the other at the hierarchical graph
level. To enforce a consistency among different levels of hierarchical graph,
we propose the Hierarchical Graph Mutual Information (HGMI) and further present
a way to compute HGMI with theoretical guarantee. We demonstrate the
effectiveness of this hierarchical graph modeling and the proposed SEAL-CI
method on text and social network data.
Related papers
- Saliency-Aware Regularized Graph Neural Network [39.82009838086267]
We propose the Saliency-Aware Regularized Graph Neural Network (SAR-GNN) for graph classification.
We first estimate the global node saliency by measuring the semantic similarity between the compact graph representation and node features.
Then the learned saliency distribution is leveraged to regularize the neighborhood aggregation of the backbone.
arXiv Detail & Related papers (2024-01-01T13:44:16Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - GraphHop: An Enhanced Label Propagation Method for Node Classification [34.073791157290614]
A scalable semi-supervised node classification method, called GraphHop, is proposed in this work.
Experimental results show that GraphHop outperforms state-of-the-art graph learning methods on a wide range of tasks.
arXiv Detail & Related papers (2021-01-07T02:10:20Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Robust Hierarchical Graph Classification with Subgraph Attention [18.7475578342125]
We introduce the concept of subgraph attention for graphs.
We propose a graph classification algorithm called SubGattPool.
We show that SubGattPool is able to improve the state-of-the-art or remains competitive on multiple publicly available graph classification datasets.
arXiv Detail & Related papers (2020-07-19T10:03:06Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
Graph Identification (GI) has long been researched in graph learning and is essential in certain applications.
This paper defines a novel problem dubbed Inverse Graph Identification (IGI)
We propose a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI.
arXiv Detail & Related papers (2020-07-12T12:06:17Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.