DRAformer: Differentially Reconstructed Attention Transformer for
Time-Series Forecasting
- URL: http://arxiv.org/abs/2206.05495v1
- Date: Sat, 11 Jun 2022 10:34:29 GMT
- Title: DRAformer: Differentially Reconstructed Attention Transformer for
Time-Series Forecasting
- Authors: Benhan Li, Shengdong Du, Tianrui Li, Jie Hu, Zhen Jia
- Abstract summary: Time-series forecasting plays an important role in many real-world scenarios, such as equipment life cycle forecasting, weather forecasting, and traffic flow forecasting.
It can be observed from recent research that a variety of transformer-based models have shown remarkable results in time-series forecasting.
However, there are still some issues that limit the ability of transformer-based models on time-series forecasting tasks.
- Score: 7.805077630467324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-series forecasting plays an important role in many real-world scenarios,
such as equipment life cycle forecasting, weather forecasting, and traffic flow
forecasting. It can be observed from recent research that a variety of
transformer-based models have shown remarkable results in time-series
forecasting. However, there are still some issues that limit the ability of
transformer-based models on time-series forecasting tasks: (i) learning
directly on raw data is susceptible to noise due to its complex and unstable
feature representation; (ii) the self-attention mechanisms pay insufficient
attention to changing features and temporal dependencies. In order to solve
these two problems, we propose a transformer-based differentially reconstructed
attention model DRAformer. Specifically, DRAformer has the following
innovations: (i) learning against differenced sequences, which preserves clear
and stable sequence features by differencing and highlights the changing
properties of sequences; (ii) the reconstructed attention: integrated distance
attention exhibits sequential distance through a learnable Gaussian kernel,
distributed difference attention calculates distribution difference by mapping
the difference sequence to the adaptive feature space, and the combination of
the two effectively focuses on the sequences with prominent associations; (iii)
the reconstructed decoder input, which extracts sequence features by
integrating variation information and temporal correlations, thereby obtaining
a more comprehensive sequence representation. Extensive experiments on four
large-scale datasets demonstrate that DRAformer outperforms state-of-the-art
baselines.
Related papers
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - Attention as Robust Representation for Time Series Forecasting [23.292260325891032]
Time series forecasting is essential for many practical applications.
Transformers' key feature, the attention mechanism, dynamically fusing embeddings to enhance data representation, often relegating attention weights to a byproduct role.
Our approach elevates attention weights as the primary representation for time series, capitalizing on the temporal relationships among data points to improve forecasting accuracy.
arXiv Detail & Related papers (2024-02-08T03:00:50Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - A Differential Attention Fusion Model Based on Transformer for Time
Series Forecasting [4.666618110838523]
Time series forecasting is widely used in the fields of equipment life cycle forecasting, weather forecasting, traffic flow forecasting, and other fields.
Some scholars have tried to apply Transformer to time series forecasting because of its powerful parallel training ability.
The existing Transformer methods do not pay enough attention to the small time segments that play a decisive role in prediction.
arXiv Detail & Related papers (2022-02-23T10:33:12Z) - Stacking VAE with Graph Neural Networks for Effective and Interpretable
Time Series Anomaly Detection [5.935707085640394]
We propose a stacking variational auto-encoder (VAE) model with graph neural networks for the effective and interpretable time-series anomaly detection.
We show that our proposed model outperforms the strong baselines on three public datasets with considerable improvements.
arXiv Detail & Related papers (2021-05-18T09:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.