A Differential Attention Fusion Model Based on Transformer for Time
Series Forecasting
- URL: http://arxiv.org/abs/2202.11402v1
- Date: Wed, 23 Feb 2022 10:33:12 GMT
- Title: A Differential Attention Fusion Model Based on Transformer for Time
Series Forecasting
- Authors: Benhan Li, Shengdong Du, Tianrui Li
- Abstract summary: Time series forecasting is widely used in the fields of equipment life cycle forecasting, weather forecasting, traffic flow forecasting, and other fields.
Some scholars have tried to apply Transformer to time series forecasting because of its powerful parallel training ability.
The existing Transformer methods do not pay enough attention to the small time segments that play a decisive role in prediction.
- Score: 4.666618110838523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting is widely used in the fields of equipment life cycle
forecasting, weather forecasting, traffic flow forecasting, and other fields.
Recently, some scholars have tried to apply Transformer to time series
forecasting because of its powerful parallel training ability. However, the
existing Transformer methods do not pay enough attention to the small time
segments that play a decisive role in prediction, making it insensitive to
small changes that affect the trend of time series, and it is difficult to
effectively learn continuous time-dependent features. To solve this problem, we
propose a differential attention fusion model based on Transformer, which
designs the differential layer, neighbor attention, sliding fusion mechanism,
and residual layer on the basis of classical Transformer architecture.
Specifically, the differences of adjacent time points are extracted and focused
by difference and neighbor attention. The sliding fusion mechanism fuses
various features of each time point so that the data can participate in
encoding and decoding without losing important information. The residual layer
including convolution and LSTM further learns the dependence between time
points and enables our model to carry out deeper training. A large number of
experiments on three datasets show that the prediction results produced by our
method are favorably comparable to the state-of-the-art.
Related papers
- PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - EdgeConvFormer: Dynamic Graph CNN and Transformer based Anomaly
Detection in Multivariate Time Series [7.514010315664322]
We propose a novel anomaly detection method, named EdgeConvFormer, which integrates stacked Time2vec embedding, dynamic graph CNN, and Transformer to extract global and local spatial-time information.
Experiments demonstrate that EdgeConvFormer can learn the spatial-temporal modeling from multivariate time series data and achieve better anomaly detection performance than the state-of-the-art approaches on many real-world datasets of different scales.
arXiv Detail & Related papers (2023-12-04T08:38:54Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - iTransformer: Inverted Transformers Are Effective for Time Series Forecasting [62.40166958002558]
We propose iTransformer, which simply applies the attention and feed-forward network on the inverted dimensions.
The iTransformer model achieves state-of-the-art on challenging real-world datasets.
arXiv Detail & Related papers (2023-10-10T13:44:09Z) - Stecformer: Spatio-temporal Encoding Cascaded Transformer for
Multivariate Long-term Time Series Forecasting [11.021398675773055]
We propose a complete solution to address problems in terms of feature extraction and target prediction.
For extraction, we design an efficient-temporal encoding extractor including a semi-adaptive graph to acquire sufficient-temporal information.
For prediction, we propose a Cascaded De Predictor (CDP) to strengthen the correlation between different intervals.
arXiv Detail & Related papers (2023-05-25T13:00:46Z) - CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting [50.23240107430597]
We design a special Transformer, i.e., Channel Aligned Robust Blend Transformer (CARD for short), that addresses key shortcomings of CI type Transformer in time series forecasting.
First, CARD introduces a channel-aligned attention structure that allows it to capture both temporal correlations among signals.
Second, in order to efficiently utilize the multi-scale knowledge, we design a token blend module to generate tokens with different resolutions.
Third, we introduce a robust loss function for time series forecasting to alleviate the potential overfitting issue.
arXiv Detail & Related papers (2023-05-20T05:16:31Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - W-Transformers : A Wavelet-based Transformer Framework for Univariate
Time Series Forecasting [7.075125892721573]
We build a transformer model for non-stationary time series using wavelet-based transformer encoder architecture.
We evaluate our framework on several publicly available benchmark time series datasets from various domains.
arXiv Detail & Related papers (2022-09-08T17:39:38Z) - DRAformer: Differentially Reconstructed Attention Transformer for
Time-Series Forecasting [7.805077630467324]
Time-series forecasting plays an important role in many real-world scenarios, such as equipment life cycle forecasting, weather forecasting, and traffic flow forecasting.
It can be observed from recent research that a variety of transformer-based models have shown remarkable results in time-series forecasting.
However, there are still some issues that limit the ability of transformer-based models on time-series forecasting tasks.
arXiv Detail & Related papers (2022-06-11T10:34:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.