論文の概要: A Simplified Un-Supervised Learning Based Approach for Ink Mismatch
Detection in Handwritten Hyper-Spectral Document Images
- arxiv url: http://arxiv.org/abs/2206.05539v1
- Date: Sat, 11 Jun 2022 14:38:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-14 14:24:53.955003
- Title: A Simplified Un-Supervised Learning Based Approach for Ink Mismatch
Detection in Handwritten Hyper-Spectral Document Images
- Title(参考訳): 簡易教師なし学習による手書きハイパースペクトル文書画像におけるインクミスマッチ検出
- Authors: Muhammad Farhan Humayun, Hassan Waseem Malik and Ahmed Ahsan Alvi
- Abstract要約: 本稿では,ハイパースペクトル文書画像に存在する異なるが視覚的に類似したインクの数を推定する効率的な手法を提案する。
このアルゴリズムはiVision HHIDデータセットでテストされ、文献に存在するアルゴリズムの状態と同等の結果を得た。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyper-spectral imaging has become the latest trend in the field of optical
imaging systems. Among various other applications, hyper-spectral imaging has
been widely used for analysis of printed and handwritten documents. This paper
proposes an efficient technique for estimating the number of different but
visibly similar inks present in a Hyper spectral Document Image. Our approach
is based on un-supervised learning and does not require any prior knowledge of
the dataset. The algorithm was tested on the iVision HHID dataset and has
achieved comparable results with the state of the algorithms present in the
literature. This work can prove to be effective when employed during the early
stages of forgery detection in Hyper-spectral Document Images.
- Abstract(参考訳): ハイパースペクトルイメージングは、光学イメージングシステムにおける最新のトレンドとなっている。
様々な用途において、ハイパースペクトルイメージングは印刷文書や手書き文書の分析に広く使われている。
本稿では,ハイパースペクトル文書画像に存在する異なるが視覚的に類似するインクの数を効率的に推定する手法を提案する。
我々のアプローチは教師なし学習に基づいており、データセットの事前知識を必要としない。
このアルゴリズムはiVision HHIDデータセットでテストされ、文献に存在するアルゴリズムの状態と同等の結果を得た。
この研究は、ハイパースペクトル文書画像における偽造検出の初期段階において有効であることが証明できる。
関連論文リスト
- Transductive Learning for Near-Duplicate Image Detection in Scanned Photo Collections [0.0]
本稿では,実世界のユースケースシナリオにおける近距離画像検出技術の比較研究について述べる。
本稿では、畳み込みニューラルネットワーク(CNN)や視覚変換器(ViT)といった最先端のディープラーニングアーキテクチャを活用するトランスダクティブ学習手法を提案する。
提案手法は,UKBenchと社内のプライベートデータセットにおいて,ほぼ重複画像検出のタスクにおいて,ベースライン手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-25T09:56:15Z) - Intra-video Positive Pairs in Self-Supervised Learning for Ultrasound [65.23740556896654]
自己教師付き学習 (SSL) は, 医療画像におけるラベル付きデータの健全性に対処するための戦略である。
本研究では,同じBモード超音波映像をSSLのペアとして用いた近位画像の利用効果について検討した。
この手法は、従来の超音波特異的比較学習法の平均検査精度を新型コロナウイルスの分類で上回り、IVPP(Intra-Video Positive Pairs)と命名された。
論文 参考訳(メタデータ) (2024-03-12T14:57:57Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Blind deblurring of hyperspectral document images [0.0]
マルチスペクトル(MS)とハイパースペクトル(HS)の画像は、RGB画像よりもはるかにリッチなスペクトル情報を含んでいる。
文書化に適した新しいブラインドHS画像デブロアリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-09T09:31:13Z) - Continual Learning Approaches for Anomaly Detection [6.014777261874645]
本研究では,連続学習環境における異常検出のためのフレームワークとして,圧縮再生を行う新しい手法を提案する。
提案手法は,我々の知る限り,連続学習環境において初めて研究されるスーパーレゾリューションモデルを用いて,原画像のスケールと圧縮を行う。
提案手法を検証するために,画素ベースの異常のある実世界の画像データセットを用いて,連続学習の文脈における異常検出のための信頼性の高いベンチマークを提供する。
論文 参考訳(メタデータ) (2022-12-21T17:08:58Z) - Self-Supervised Endoscopic Image Key-Points Matching [1.3764085113103222]
本稿では,深層学習技術に基づく内視鏡画像マッチングのための新しい自己教師型アプローチを提案する。
提案手法は,手作りの標準的なローカル特徴記述子よりも精度とリコールの点で優れていた。
論文 参考訳(メタデータ) (2022-08-24T10:47:21Z) - Pattern Spotting and Image Retrieval in Historical Documents using Deep
Hashing [60.67014034968582]
本稿では,歴史文書のデジタルコレクションにおける画像検索とパターンスポッティングのためのディープラーニング手法を提案する。
ディープラーニングモデルは、実数値またはバイナリコード表現を提供する2つの異なるバリエーションを考慮して、特徴抽出に使用される。
また,提案手法により検索時間を最大200倍に短縮し,関連する作業と比較してストレージコストを最大6,000倍に削減する。
論文 参考訳(メタデータ) (2022-08-04T01:39:37Z) - Colorectal Polyp Classification from White-light Colonoscopy Images via
Domain Alignment [57.419727894848485]
大腸内視鏡画像からの正確な診断を支援するためには,コンピュータ支援診断システムが必要である。
これまでのほとんどの研究では、Narrow-Band Imaging (NBI) や他の拡張画像を用いて、ポリプの分化モデルの開発を試みている。
正確な大腸ポリープ分類のための教師/学生アーキテクチャに基づく新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-08-05T09:31:46Z) - An Unsupervised Sampling Approach for Image-Sentence Matching Using
Document-Level Structural Information [64.66785523187845]
教師なし画像文マッチングの問題に焦点をあてる。
既存の研究では、文書レベルの構造情報を用いて、モデルトレーニングの正および負のインスタンスをサンプリングする方法が検討されている。
そこで本研究では,追加の文書内画像-文対を正あるいは負のサンプルとして選択する新しいサンプリング手法を提案する。
論文 参考訳(メタデータ) (2021-03-21T05:43:29Z) - Feature matching in Ultrasound images [7.52584704734977]
超音波画像に特有な深層学習手法を提案する。
通常の画像に優れた結果をもたらす既存手法について検討する。
論文 参考訳(メタデータ) (2020-10-23T07:43:27Z) - CSI: Novelty Detection via Contrastive Learning on Distributionally
Shifted Instances [77.28192419848901]
コントラストシフトインスタンス (CSI) という,単純かつ効果的な手法を提案する。
従来のコントラスト学習法のように,サンプルを他の例と対比することに加えて,本トレーニング手法では,サンプルを分散シフトによる拡張と対比する。
本実験は, 種々の新規検出シナリオにおける本手法の優位性を実証する。
論文 参考訳(メタデータ) (2020-07-16T08:32:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。