論文の概要: RadNet: Incident Prediction in Spatio-Temporal Road Graph Networks Using
Traffic Forecasting
- arxiv url: http://arxiv.org/abs/2206.05602v1
- Date: Sat, 11 Jun 2022 20:06:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-19 07:36:41.367435
- Title: RadNet: Incident Prediction in Spatio-Temporal Road Graph Networks Using
Traffic Forecasting
- Title(参考訳): RadNet:トラフィック予測を用いた時空間道路グラフネットワークにおけるインシデント予測
- Authors: Shreshth Tuli and Matthew R. Wilkinson and Chris Kettell
- Abstract要約: 我々はRadNetと呼ばれるニューラルモデルを開発し、将来の時間ステップでシステムのパラメータを予測する。
以前の作業とは異なり、RadNetは両方の置換における空間的傾向と時間的傾向を推定し、最終的に予測の前に密度の高い表現を組み合わせる。
- 参考スコア(独自算出の注目度): 2.6690664860458906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient and accurate incident prediction in spatio-temporal systems is
critical to minimize service downtime and optimize performance. This work aims
to utilize historic data to predict and diagnose incidents using
spatio-temporal forecasting. We consider the specific use case of road traffic
systems where incidents take the form of anomalous events, such as accidents or
broken-down vehicles. To tackle this, we develop a neural model, called RadNet,
which forecasts system parameters such as average vehicle speeds for a future
timestep. As such systems largely follow daily or weekly periodicity, we
compare RadNet's predictions against historical averages to label incidents.
Unlike prior work, RadNet infers spatial and temporal trends in both
permutations, finally combining the dense representations before forecasting.
This facilitates informed inference and more accurate incident detection.
Experiments with two publicly available and a new road traffic dataset
demonstrate that the proposed model gives up to 8% higher prediction F1 scores
compared to the state-of-the-art methods.
- Abstract(参考訳): 時空間システムにおける効率的な正確なインシデント予測は、サービスのダウンタイムを最小化し、パフォーマンスを最適化するために重要である。
本研究は,時空間予測による事象の予測と診断に歴史的データを活用することを目的とする。
本稿では,事故や車両の故障などの異常な事象を発生させる道路交通システムの利用事例について考察する。
そこで我々はRadNetと呼ばれるニューラルモデルを開発し、将来のタイムステップにおける平均車両速度などのシステムパラメータを予測する。
このようなシステムは、主に毎日または毎週の周期性に従うので、RadNetの予測と過去の平均値を比較し、インシデントをラベル付けする。
以前の作業とは異なり、RadNetは両方の置換における空間的傾向と時間的傾向を推定し、最終的に予測の前に密度の高い表現を組み合わせる。
これにより、情報推論とより正確なインシデント検出が容易になる。
2つの公開可能な実験と新しい道路交通データセットにより、提案されたモデルが最先端の手法と比較して最大8%高い予測F1スコアを与えることを示した。
関連論文リスト
- Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention [76.37139809114274]
HPNetは、新しい動的軌道予測手法である。
逐次予測間の動的関係を自動的に符号化する履歴予測アテンションモジュールを提案する。
私たちのコードはhttps://github.com/XiaolongTang23/HPNetで利用可能です。
論文 参考訳(メタデータ) (2024-04-09T14:42:31Z) - A Comparative Study of Loss Functions: Traffic Predictions in Regular
and Congestion Scenarios [0.0]
本稿では、重み解析と不均衡な分類問題から着想を得た種々の損失関数を探索し、この問題に対処する。
平均絶対誤差(MAE)を最適化する場合,MAE-Focal Loss関数が最も有効であることがわかった。
本研究は,混雑による急激な速度変化を予測する深層学習モデルの能力を高める。
論文 参考訳(メタデータ) (2023-08-29T17:44:02Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
道路交通事故予測におけるデータ不足の根本的な課題を、事故の代わりに緊急ブレーキイベントをトレーニングすることで解決します。
メルセデス・ベンツ車両の緊急ブレーキデータに基づくドイツにおける交通事故予測モデルを実装したプロトタイプを提案する。
論文 参考訳(メタデータ) (2021-02-12T18:17:12Z) - Short-Term Traffic Forecasting Using High-Resolution Traffic Data [2.0625936401496237]
本稿では,高分解能(イベントベース)トラフィックデータを用いた交通予測のためのデータ駆動ツールキットを開発した。
提案手法は,アラブ首長国連邦アブダビの現実世界の交通ネットワークから得られた高分解能データを用いて検証した。
論文 参考訳(メタデータ) (2020-06-22T14:26:19Z) - Traffic Flow Forecast of Road Networks with Recurrent Neural Networks [0.0]
効率的なインテリジェント交通システムには交通流の予測が不可欠である。
本研究では, 様々なリカレントニューラルネットワークを用いて, この予測を行う。
多くの場合、ゲート再帰単位を持つベクトル出力モデルは、テストセット上で最小の誤差を達成した。
論文 参考訳(メタデータ) (2020-06-08T15:17:58Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
我々は、自動運転車の文脈において、共同認識と運動予測の問題に取り組む。
我々は,入力センサデータとしてエンド・ツー・エンドのモデルであるNetを提案し,各ステップのオブジェクト追跡とその将来レベルを出力する。
論文 参考訳(メタデータ) (2020-05-29T17:57:25Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z) - BusTime: Which is the Right Prediction Model for My Bus Arrival Time? [3.1761486589684975]
本稿では, このギャップを補うために, 広く用いられている予測モデルを解析するための汎用的, 実用的な評価枠組みを提案する。
特に、このフレームワークには、入力データポイントをはるかに少なくする生のバスGPSデータ前処理方法が含まれている。
また,都市マネジャーに対して,一般的な予測モデルのトレーニングおよび予測段階における実践的強みと弱みを分析し,予備的な結果を提示する。
論文 参考訳(メタデータ) (2020-03-20T17:03:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。