Superiority of GNN over NN in generalizing bandlimited functions
- URL: http://arxiv.org/abs/2206.05904v8
- Date: Sun, 1 Oct 2023 00:50:34 GMT
- Title: Superiority of GNN over NN in generalizing bandlimited functions
- Authors: A. Martina Neuman, Rongrong Wang and Yuying Xie
- Abstract summary: Graph Neural Networks (GNNs) have emerged as formidable resources for processing graph-based information across diverse applications.
In this study, we investigate the proficiency of GNNs for such classifications, which can also be cast as a function problem.
Our findings highlight a pronounced efficiency in utilizing GNNs to generalize a bandlimited function within an $varepsilon$-error margin.
- Score: 6.3151583550712065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have emerged as formidable resources for
processing graph-based information across diverse applications. While the
expressive power of GNNs has traditionally been examined in the context of
graph-level tasks, their potential for node-level tasks, such as node
classification, where the goal is to interpolate missing node labels from the
observed ones, remains relatively unexplored. In this study, we investigate the
proficiency of GNNs for such classifications, which can also be cast as a
function interpolation problem. Explicitly, we focus on ascertaining the
optimal configuration of weights and layers required for a GNN to successfully
interpolate a band-limited function over Euclidean cubes. Our findings
highlight a pronounced efficiency in utilizing GNNs to generalize a bandlimited
function within an $\varepsilon$-error margin. Remarkably, achieving this task
necessitates only $O_d((\log\varepsilon^{-1})^d)$ weights and
$O_d((\log\varepsilon^{-1})^d)$ training samples. We explore how this criterion
stacks up against the explicit constructions of currently available Neural
Networks (NNs) designed for similar tasks. Significantly, our result is
obtained by drawing an innovative connection between the GNN structures and
classical sampling theorems. In essence, our pioneering work marks a meaningful
contribution to the research domain, advancing our understanding of the
practical GNN applications.
Related papers
- A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
We take a manifold perspective to establish the statistical generalization theory of GNNs on graphs sampled from a manifold in the spectral domain.
We prove that the generalization bounds of GNNs decrease linearly with the size of the graphs in the logarithmic scale, and increase linearly with the spectral continuity constants of the filter functions.
arXiv Detail & Related papers (2024-06-07T19:25:02Z) - Graph Neural Networks Do Not Always Oversmooth [46.57665708260211]
We study oversmoothing in graph convolutional networks (GCNs) by using their Gaussian process (GP) equivalence in the limit of infinitely many hidden features.
We identify a new, non-oversmoothing phase: if the initial weights of the network have sufficiently large variance, GCNs do not oversmooth, and node features remain informative even at large depth.
arXiv Detail & Related papers (2024-06-04T12:47:13Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs.
We investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs)
Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation.
arXiv Detail & Related papers (2023-09-12T09:18:12Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
Graph Neural Networks (GNNs) have enjoyed wide spread applications in graph-structured data.
GNNs are required to learn latent patterns from a limited amount of training data to perform inferences on a vast amount of test data.
In this paper, we push one step forward on the ensemble learning of GNNs with improved accuracy, robustness, and adversarial attacks.
arXiv Detail & Related papers (2023-03-20T18:24:01Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - On the approximation capability of GNNs in node
classification/regression tasks [4.141514895639094]
Graph Neural Networks (GNNs) are a broad class of connectionist models for graph processing.
We show that GNNs are universal approximators in probability for node classification/regression tasks.
arXiv Detail & Related papers (2021-06-16T17:46:51Z) - Edgeless-GNN: Unsupervised Inductive Edgeless Network Embedding [7.391641422048645]
We study the problem of embedding edgeless nodes such as users who newly enter the underlying network.
We propose Edgeless-GNN, a new framework that enables GNNs to generate node embeddings even for edgeless nodes through unsupervised inductive learning.
arXiv Detail & Related papers (2021-04-12T06:37:31Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
Graph Neural Networks (GNNs) are emerging machine learning models on graphs.
Most existing GNN models in practice are shallow and essentially feature-centric.
We show empirically and analytically that the existing shallow GNNs cannot preserve graph structures well.
We propose Eigen-GNN, a plug-in module to boost GNNs ability in preserving graph structures.
arXiv Detail & Related papers (2020-06-08T02:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.