GNN-Ensemble: Towards Random Decision Graph Neural Networks
- URL: http://arxiv.org/abs/2303.11376v1
- Date: Mon, 20 Mar 2023 18:24:01 GMT
- Title: GNN-Ensemble: Towards Random Decision Graph Neural Networks
- Authors: Wenqi Wei, Mu Qiao, Divyesh Jadav
- Abstract summary: Graph Neural Networks (GNNs) have enjoyed wide spread applications in graph-structured data.
GNNs are required to learn latent patterns from a limited amount of training data to perform inferences on a vast amount of test data.
In this paper, we push one step forward on the ensemble learning of GNNs with improved accuracy, robustness, and adversarial attacks.
- Score: 3.7620848582312405
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph Neural Networks (GNNs) have enjoyed wide spread applications in
graph-structured data. However, existing graph based applications commonly lack
annotated data. GNNs are required to learn latent patterns from a limited
amount of training data to perform inferences on a vast amount of test data.
The increased complexity of GNNs, as well as a single point of model parameter
initialization, usually lead to overfitting and sub-optimal performance. In
addition, it is known that GNNs are vulnerable to adversarial attacks. In this
paper, we push one step forward on the ensemble learning of GNNs with improved
accuracy, generalization, and adversarial robustness. Following the principles
of stochastic modeling, we propose a new method called GNN-Ensemble to
construct an ensemble of random decision graph neural networks whose capacity
can be arbitrarily expanded for improvement in performance. The essence of the
method is to build multiple GNNs in randomly selected substructures in the
topological space and subfeatures in the feature space, and then combine them
for final decision making. These GNNs in different substructure and subfeature
spaces generalize their classification in complementary ways. Consequently,
their combined classification performance can be improved and overfitting on
the training data can be effectively reduced. In the meantime, we show that
GNN-Ensemble can significantly improve the adversarial robustness against
attacks on GNNs.
Related papers
- Unleash Graph Neural Networks from Heavy Tuning [33.948899558876604]
Graph Neural Networks (GNNs) are deep-learning architectures designed for graph-type data.
We propose a graph conditional latent diffusion framework (GNN-Diff) to generate high-performing GNNs directly by learning from checkpoints saved during a light-tuning coarse search.
arXiv Detail & Related papers (2024-05-21T06:23:47Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - Distributed Graph Neural Network Training: A Survey [51.77035975191926]
Graph neural networks (GNNs) are a type of deep learning models that are trained on graphs and have been successfully applied in various domains.
Despite the effectiveness of GNNs, it is still challenging for GNNs to efficiently scale to large graphs.
As a remedy, distributed computing becomes a promising solution of training large-scale GNNs.
arXiv Detail & Related papers (2022-11-01T01:57:00Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
Graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice.
We provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems.
arXiv Detail & Related papers (2020-06-25T00:45:52Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
Graph Neural Networks (GNNs) are emerging machine learning models on graphs.
Most existing GNN models in practice are shallow and essentially feature-centric.
We show empirically and analytically that the existing shallow GNNs cannot preserve graph structures well.
We propose Eigen-GNN, a plug-in module to boost GNNs ability in preserving graph structures.
arXiv Detail & Related papers (2020-06-08T02:47:38Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
Graph neural networks (GNNs) have received much attention recently because of their excellent performance on graph-based tasks.
We propose self-enhanced GNN (SEG), which improves the quality of the input data using the outputs of existing GNN models.
SEG consistently improves the performance of well-known GNN models such as GCN, GAT and SGC across different datasets.
arXiv Detail & Related papers (2020-02-18T12:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.